
UCRL-WEB-201386

SLURM Reference Manual

SLURM Reference Manual - 1

Table of Contents

Preface 4
Introduction 5
SLURM Goals and Roles 6

SLURM Goals 6
SLURM Roles 8
SLURM and Operating Systems 9

SLURM Features 10
SLURM Components 10

SLURMCTLD 10
SLURMD 12

Portability (Plugins) 13
User Impact 14
Scheduler Types 15

SLURM Operation 16
SLURM Utilities 16
SRUN (Submit Jobs) 17

SRUN Roles and Modes 17
Comparison with POE 19
SRUN Run-Mode Options 20
SRUN Resource-Allocation Options 23
SRUN Control Options 26

Node Management 26
Working Features 29
Resource Control 32
Help and Message Options 33
Prolog and Epilog Options 34
Debug (Root) Options 35

SRUN I/O Options 36
I/O Commands 36
I/O Redirection Alternatives 37

SRUN Constraint Options 39
General Constraints 39
Affinity or NUMA Constraints 41

Environment Variables 44
Multiple Program Usage 50

SQUEUE (List Jobs) 52
SQUEUE Execute Line 52
SQUEUE Options 53
SQUEUE Examples 56
SQUEUE Job State Codes 58

SINFO (List Nodes) 59
SINFO Execute Line 59
SINFO Options 60

SLURM Reference Manual - 2

SINFO Output Fields 64
SINFO Node States 66
SINFO Examples 67

SMAP (Show Job Geometry) 69
SCONTROL (Manage Configurations) 71
SCANCEL (Signal or Kill Jobs) 73

SCANCEL Execute Line 73
SCANCEL Options 74
SCANCEL Examples 76

Disclaimer 77
Keyword Index 78
Alphabetical List of Keywords 80
Date and Revisions 82

SLURM Reference Manual - 3

Preface

Scope: This manual explains the design goals and unique roles of LC's locally developed
Simple Linux Utility for Resource Management (SLURM), intended as a customized
replacement for RMS or NQS in allocating compute resources (mostly nodes) to
queued jobs on machines running the CHAOS operating system. Sections describe
the features of both control daemon SLURMCTLD and local daemon SLURMD, as
well as SLURM's adaptability by means of plugin modules. The six SLURM user
utilities for querying and controlling jobs managed by SLURM are also introduced.
The features and options of SRUN, the tool used to launch both parallel interactive
and batch jobs under SLURM management, receive especially detailed treatment.
Another section explains how to monitor SRUN-submitted jobs by using SQUEUE,
as well as how to customize SQUEUE's reports using its own format specification
language. Likewise, a section tells how to check the current status of nodes
(individually or by partition) using SINFO. The general-user features of SCONTROL
are also included, along with a review of the SCANCEL options for signaling or
killing your SLURM-managed jobs.

Availability: SLURM is part of the CHAOS project, and is available on selected large LC clusters
that run the CHAOS version of Linux.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at

OCF: http://www.llnl.gov/LCdocs/slurm/slurm.pdf
SCF: http://www.llnl.gov/LCdocs/slurm/slurm_scf.pdf

SLURM Reference Manual - 4

http://www.llnl.gov/LCdocs/slurm/slurm.pdf

Introduction
SLURM is LC's locally developed C-language Simple Linux Utility for Resource Management. SLURM

is a job- and compute-resource manager that can run reliably and efficiently on Linux (CHAOS) clusters
as large as several thousand nodes. Its features suit it to large-scale, high-performance computing
environments, and its design avoids known weaknesses (such as inflexibility or fault intolerance) in available
commercial resource management products for supercomputers.

Overview.
This manual summarizes the specific service goals that SLURM was developed to meet, and explains the
roles that it plays (relative to the Livermore Computing Resource Management (LCRM/DPCS) system,
for example) on LC production machines. Key to SLURM's operation are two software daemons: one
(SLURMCTLD) controls the job queue and resource allocations, while the other (SLURMD) shepherds
executing jobs on each compute node. Sections below explain the features and subsystems of each SLURM
daemon. Additional sections tell how use of "plugin modules" make SLURM easily adaptable to many
hardware situations, and introduce the five utility programs that give SLURM its direct user interface.

SLURM Tools.
SRUN is the SLURM utility central to launching, assigning resources to, and guiding the execution of
parallel jobs managed by SLURM, both interactively and through batch queues. Hence, the five ways to
use SRUN (its "modes"), SRUN's complex I/O redirection support, and the often-elaborate interaction
among the many SRUN options receive careful attention in several subsections devoted to that tool. SRUN
also interacts with a set of special SLURM environment variables (like those used for job management by
IBM's POE), explained in another subsection. Detailed and customizable monitoring of SRUN-submitted
jobs is provided by SQUEUE, whose options we also compare and illustrate with annotated output cases.
Likewise, to plan SRUN use you can monitor SLURM-managed nodes by executing or customizing a
separate SLURM tool called SINFO, with its own section below. Checkpoint support using SCONTROL
is introduced as well, along with the ability to signal or kill jobs or their steps by using SCANCEL.

Other Relevant Documentation.
SLURM development is part of LC's larger CHAOS open-source operating system project, as explained
in the separate CHAOS Reference Manual. (URL: http://www.llnl.gov/LCdocs/chaos) For a summary of
known, significant differences between LC's Linux machines and those running AIX or Tru64 UNIX, see
the Linux Differences (URL: http://www.llnl.gov/LCdocs/linux) guide. And for general advice on managing
(batch) jobs on LC production machines, consult the examples and comparisons in the basic
EZJOBCONTROL (URL: http://www.llnl.gov/LCdocs/ezjobcontrol) guide.

On LC machines where Moab has replaced LCRM as the "workload manager," Moab manages batch
jobs among clusters while SLURM manages compute resources within clusters. LC-local information on
how Moab and SLURM interact appears in the Moab at LC (URL: http://www.llnl.gov/LCdocs/moab)
guide, one section (URL: http://www.llnl.gov/LCdocs/moab/index.jsp?show=s3) of which also links to
special Moab-SLURM configuration manuals for system administrators published by both LLNL and
Cluster Resources, Inc.

SLURM Reference Manual - 5

http://www.llnl.gov/LCdocs/chaos
http://www.llnl.gov/LCdocs/linux
http://www.llnl.gov/LCdocs/ezjobcontrol
http://www.llnl.gov/LCdocs/moab
http://www.llnl.gov/LCdocs/moab/index.jsp?show=s3

SLURM Goals and Roles

SLURM Goals
SLURM was developed specifically to meet locally important criteria for a helpful, efficient way to

manage compute resources on large (Linux/CHAOS) clusters. The primary threefold purpose of a cluster
resource manager (such as LoadLeveler on LC's IBM ASC machines or the Resource Management System
(RMS) from Quadrics) is to:

• Allocate nodes--
give users access (perhaps even exclusive access) to compute nodes for some specified time range
so their job(s) can run.

• Control job execution--
provide the underlying mechanisms to start, run, cancel, and monitor the state of parallel (or serial)
jobs on the nodes allocated.

• Manage contention--
reconcile competing requests for limited resources, usually by managing a queue of pending jobs.

At LC, an adequate cluster resource manager needs to meet two general requirements:

• Scalable--
It must operate well on clusters with as many as several thousand nodes, including cases where the
nodes are heterogeneous (with different hardware or configuration features).

• Portable--
It must ultimately support jobs on clusters that have different operating systems or versions, different
architectures, different vendors, and different interconnect networks. Linux/CHAOS is, of course,
the intended first home for this software, however.

Any LC resource manager must also meet two additional, locally important, requirements:

• Compatible with LCRM (DPCS)--
Since a resource manager is not a complex scheduler nor a complete batch system with across-cluster
accounting and reporting features, it must support and work well within such a larger, more
comprehensive job-control framework. At LC, the Livermore Computing Resource Management
system (formerly called DPCS (URL: http://www.llnl.gov/LCdocs/dpcs)) provides that framework
(see also the next section (page 8)).

• Compatible with QsNet--
Since LC's Linux Project has already refined QsNet as its preferred high-speed interconnect for
Linux/CHAOS clusters, an adequate resource manager must also allocate Quadrics QsNet resources
along with compute nodes. But conversely, interconnect independence and the ability to easily support
other brands of interconnect (such as Myrinet) is important too. Such independence allows great
flexibility in pursuing new hardware configurations in future clusters.

Finally, to fit well into LC's emerging CHAOS environment, a resource manager should ideally have
these three very beneficial extra properties as well:

SLURM Reference Manual - 6

http://www.llnl.gov/LCdocs/dpcs

• Fault Tolerant--
Innovative scientific computing systems are often much less stable than routine business clusters,
so a good local resource manager should recover well from many kinds of system failures (without
terminating its workload), including failure of the node where its own control functions execute.

• Open Source--
The software (source code) should be freely sharable under the GNU General Public License, as
with other nonproprietary CHAOS components.

• Modular--
An approach that clearly separates high-level job-scheduling functions from low-level
cluster-administration functions allows for easier changes in scheduling policy without having to
sacrifice working, familiar cluster-resource tools or features.

No commercial (or existing open source) resource manager meets all of these needs. So since 2001
Livermore Computing, in collaboration with Linux NetworX and Brigham Young University, has developed
and refined the "Simple Linux Utility for Resource Management" (SLURM).

SLURM Reference Manual - 7

SLURM Roles
SLURM fills a crucial but mostly hidden role in running large parallel programs on large clusters.

Most users who run batch jobs at LC use job-control utilities (such as PSUB or PALTER) that talk to
the Livermore Computing Resource Management system (LCRM, formerly called DPCS), LC's locally
designed metabatch system. LCRM:

• Provides a common user interface for batch-job submittal across all LC machines and clusters.

• Monitors resource use across machines and clusters.

• Implements bank-based fair-share scheduling policy, again, across all LC production machines.

To carry out its scheduling decisions, LCRM relies on the native resource manager on each machine
or cluster where it assigns batch jobs to run. The basic duties of such a native resource manager are to:

• Get and share information on resource (chiefly node) availability.

• Allocate compute resources (chiefly, nodes or processors).

• Shepard jobs as their tasks execute.

On IBM AIX machines, LoadLeveler traditionally served as the native resource manager. On LC's
nonAIX machines, LCRM has relied on one of three other native resource managers to provide low-level
job control:

• RMS (Resource Management System), used on "capability" clusters (devoted to one or two users at
a time).

• TBS (Trivial Batch System, an LC-developed replacement for the formerly widespread Network
Queueing System or NQS).

• SLURM (introduced here for managing Linux clusters and still evolving to meet specific LC needs).

The key differences among these alternatives appear in this table:

SLURMTBSRMS
No, open sourceNo, open sourceYesProprietary?
Interconnect independentInterconnect independentMachines with QsNet

interconnect
Used on:

Either with CHAOSCapacity clustersCapability clustersSuited for:
Either possibleMultiple jobs per nodeWhole nodes allocated

to jobs
Node allocation:

SLURM Reference Manual - 8

SLURM and Operating Systems
SLURM was originally used as a resource manager for Linux (specifically for CHAOS) systems. But

starting in 2006, LC began gradually replacing IBM's native LoadLeveler with SLURM on its AIX systems
as well. The AIX-SLURM combination behaves (and has been configured by LC system administrators
to behave) slightly differently than the CHAOS-SLURM combination, however. This means that to answer
a job-control question increasingly requires knowing both the relevant resource manager and the current
operating system.

This table summarizes the known tool contrasts among the different resource-manager/operating-system
combinations now possible on LC machines:

AIX +
SLURM

AIX +
LoadLeveler

Linux (CHAOS) +
SLURM

POEPOESRUNStart a parallel job:
POE
-rmpool pname
(not number)

POE
-rmpool pnumber
(not name)

SRUN
-w or --nodelist

Specify a node pool:

SQUEUELLQSQUEUEGet job information:
SINFOLLSTATUSSINFOGet node information:
SCANCELLLCANCELSCANCELCancel a started job:
YESYESNOPSUB -g option applies:

SLURM Reference Manual - 9

SLURM Features

SLURM Components
SLURM consists of two kinds of daemon (discussed here) and five command-line user utilities (next

section (page 16)), whose relationships appear in this simplified architecture diagram:

user>>SRUN -| -------------
 | | |
 SCANCEL-|--------| SLURMCTLD |--------| SCONTROL
 | | |
 SQUEUE -| -------------
 | |
 SINFO -| ---------------------
 | | |
 SLURMD SLURMD SLURMD
 (...compute nodes...)

SLURMCTLD

SLURM's central control daemon is called SLURMCTLD. Unlike the Portable Batch System daemon,
SLURMCTLD is multi-threaded, so some threads can handle problems without delaying service to
continuing normal jobs that also need attention. SLURMCTLD runs on a single management node (with
a fail-over spare copy elsewhere for safety), reads the SLURM configuration file, and maintains state
information on:

• nodes (the basic compute resource),

• partitions (logically disjoint sets of nodes),

• jobs (or resource allocations to run jobs for a time period), and

• job steps (parallel tasks within a job). Job steps are not supported on BlueGene/L.

The SLURMCTLD daemon in turn consists of three software subsystems, each with a specific role:

Node Manager

monitors the state and configuration of each node in the cluster. It receives state-change
messages from each compute node's SLURMD daemon asynschonously, and it also
actively polls those daemons periodically for status reports.

Partition Manager

groups nodes into disjoint sets (partitions) and assigns job limits and access controls
to each partition. The partition manager also allocates nodes to jobs (at the request
of the Job Manager, below) based on job and partition properties. SCONTROL is the
(privileged) user utility that can alter partition properties.

SLURM Reference Manual - 10

Job Manager accepts job requests (from SRUN (page 17) or a metabatch system like LCRM),
places them in a priority-ordered queue, and reviews that queue periodically or when
any state change might allow a new job to start. Qualifying jobs are allocated resources
and that information transfers to (SLURMD on) the relevant nodes so the job can
execute. When all nodes assigned to a job report that their work is done, the Job
Manager revises its records and reviews the pending-job queue again.

SLURM Reference Manual - 11

SLURMD

The SLURMD daemon runs on every compute node of every cluster that SLURM manages and it
performs the lowest level work of resource management. Like SLURMCTLD (above), SLURMD is
multi-threaded for efficiency, but unlike SLURMCTLD it runs with root privilege (so it can initiate jobs
on behalf of other users).

SLURMD carries out five key tasks and has five corresponding subsystems:

Machine Status

responds to SLURMCTLD requests for machine state information and sends
asynchronous reports of state changes to help with queue control.

Job Status responds to SLURMCTLD requests for job state information and sends asynchronous
reports of state changes to help with queue control.

Remote Execution

starts, monitors, and cleans up after a set of processes (usually shared by a parallel
job), as decided by SLURMCTLD (or by direct user intervention). This often involves
many process-limit, environment-variable, working-directory, and user-id changes.

Stream Copy Service

handles all STDERR, STDIN, and STDOUT for remote tasks. This may involve
redirection, and it always involves locally buffering job output to avoid blocking local
tasks.

Job Control propagates signals and job-termination requests to any SLURM-managed processes
(often interacting with the Remote Execution subsystem).

SLURM Reference Manual - 12

Portability (Plugins)
SLURM achieves portability (hardware independence) by using a general plugin mechanism. SLURM's

configuration file tells it which plugin modules to accept.

A SLURM plugin is a dynamically linked code object that the SLURM libraries load explicitly at run
time. Each plugin provides a customized implementation of a well-defined API connected to some specific
tasks.

By means of this plugin approach, SLURM can easily change its:

• interconnect support (default is Quadrics QsNet).

• security techniques (default is to use crypto techniques to authenticate services to users and to each
other).

• metabatch scheduler (default is LC's LCRM/DPCS, with a "Grid" resource broker as an easy
alternative).

• low-level job scheduler (page 15) for locally prioritizing and initiating SRUN-managed jobs.

• between-node communication "layers" (default is Berkeley sockets).

SLURM plugins (on relevant machines) are also how the SLURM utility SRUN supports special
task-affinity and NUMA (NonUniform Memory Access) control options (to impose job constraints that
can only be fulfilled on machines with NUMA hardware). See the "Affinity or NUMA Constraints" section
(page 41) below for implementation details.

SLURM Reference Manual - 13

User Impact
TOOLS:

The primary SLURM job-control tool is SRUN, (page 17) which fills the general role of PRUN (on former
Compaq machines) or POE (on IBM computers). Your choice of run mode ("batch" or interactive) and
your allocation of resources with SRUN strongly affect your job's behavior on machines where SLURM
manages parallel jobs. SLURM works collaboratively with POE on AIX machines where SLURM has
replaced IBM's LoadLeveler. See the SCONTROL section (page 71) below, for example, for an introduction
to how this collaboration supports job checkpointing.

To monitor the status of SRUN-submitted jobs, use the SLURM utility called SQUEUE (page 52).
To monitor the status of SLURM-managed compute nodes, use the complementary tool called SINFO
(page 59). Both SQUEUE and SINFO have explanatory sections later in this manual, with usage examples.

On BlueGene/L only, SLURM provides an additional user tool called SMAP (page 69) to reveal
topographically how nodes are allocated among current jobs or partitions (because job geometry is unusually
important on BG/L).

POLICIES:
Once your SLURM-managed batch job starts to run on some LC machine's compute nodes, you have been
allowed to log in to those nodes to execute additional processes (usually ones for monitoring or interactively
guiding the batch job). When the batch job ended, these extra login sessions and nonbatch processes were
allowed to continue. If these tasks were CPU intensive, however, they sometimes caused problems for
subsequent batch runs by other users of the same compute nodes.

Starting in August, 2007, on LC Linux (but not AIX) clusters where SLURM is the resource manager
underlying LCRM or Moab, all of a user's processes on any compute node will terminate whenever a
SLURM-managed batch job completes on that node. This guarantees that the next user's job will see no
interference from stray processes that accompanied your job. If your login session or interactive process
on a Linux compute node unexpectedly ends, your batch job to which that node was allocated has probably
just completed.

SLURM Reference Manual - 14

Scheduler Types
The system administrator for each machine can configure SLURM to invoke any of several alternative

local job schedulers. You can discover which scheduler SLURM currently invokes on any machine by
executing

scontrol show config | grep SchedulerType

where the returned string will have one of these values:

builtin (default) is a first-in-first-out scheduler. SLURM executes jobs strictly in the order
that they were submitted (for each resource partition). Even if resources become
available to start a specific job, SLURM will wait until no previously submitted job
is pending (which sometimes confuses impatient job submitters).

backfill modifies strict FIFO scheduling to take advantage of resource islands that may appear
as earlier jobs complete. SLURM will start later-submitted jobs out of order if resources
become available and if doing so does not delay the expected execution time of any
earlier-submitted job. You increase your job's chances of benefiting from such backfill
scheduling if you:
(1) specify reasonable time limits (the default is the same time limit for all jobs in
your partition, perhaps much too large), and
(2) avoid requiring or excluding specific nodes by name.
BlueGene/L Note: backfill scheduling never occurs on BlueGene/L because that
machine's unusual and complex architecture thwarts reliably finding left over resource
islands to fill.

wiki uses the Maui Scheduler, with a sophisticated set of internal scheduling algorithms.
This choice can be configured in many ways to optimize job throughput. Details are
posted on a support web site at http://supercluster.org/maui (URL:
http://supercluster.org/maui).

SLURM Reference Manual - 15

http://supercluster.org/maui

SLURM Operation

SLURM Utilities
SLURM's six command-line utilities provide its direct interface for users (while LCRM and Moab

utilities, as explained in EZJOBCONTROL (URL: http://www.llnl.gov/LCdocs/ezjob), provide an indirect
interface). These utilities are:

SRUN submits jobs to run under SLURM management. SRUN can
(A) submit a batch job and then terminate, or
(B) submit an interactive job and then persist to shepherd the job as it runs, or
(C) allocate resources to a shell and then spawn that shell for use in running subordinate
jobs.
SLURM associates every set of parallel tasks ("job steps") with the SRUN instance
that initiated that set, and SRUN gives you elaborate control over node choice and
I/O redirection for your parallel job. (Job steps are not supported on BlueGene/L.)

SQUEUE displays (by default) the queue of running and waiting jobs (or "job steps"), including
the JobId (used for SCANCEL), and the nodes assigned to each running job. But you
can customize SQUEUE reports to cover any of 24 different job properties, sorted
by the properties most important to you.

SINFO displays a summary of status information on SLURM-managed partitions and nodes
(not jobs). Customizable SINFO reports can cover the node count, state, and name
list for a whole partition, or the CPUs, memory, disk space, or current status for
individual specified nodes.

SCANCEL cancels a running or waiting job, or sends a specified signal to all processes on all
nodes associated with a job (only job owners or their administrators can cancel their
jobs).

SCONTROL (privileged users only) manages available nodes (for example, by "draining" jobs
from a node or partition to prepare it for servicing) and assigns properties to node
partitions.

SMAP (on BlueGene/L only) displays a character-based chart or plot showing how nodes
are allocated geometrically among current jobs and BG/L partitions (a job-planning
tool).

SLURM Reference Manual - 16

http://www.llnl.gov/LCdocs/ezjob

SRUN (Submit Jobs)

SRUN Roles and Modes

SRUN executes tasks ("jobs") in parallel on multiple compute nodes at the same time (on machines
where SLURM manages the resources). SRUN options let you both:

• Specify the parallel environment for your job(s), such as the number of nodes used, node partition,
distribution of processes among nodes, and total time, and also

• Control the behavior of your parallel job as it runs, such as by redirecting or labeling its output,
sending it signals, or specifying its reporting verbosity.

Because it performs several different roles, SRUN can be used in five distinct ways or "modes":

• SIMPLE.
The simplest way to use SRUN is to distribute execution of a serial program (such as a UNIX utility)
across a specified number or range of compute nodes. For example,

srun -N 8 cp ~/data1 /var/tmp/data1
copies (CP) file data1 from your common home directory into local disk space on each of eight
compute nodes. This is very like running simple programs in parallel under AIX by using IBM's
POE command (except that SRUN lets you set relevant environment variables on its own execute
line, unlike POE). In simple mode, SRUN submits your job to the local SLURM job controller,
initiates all processes on the specified nodes, and blocks until needed resources are free to run the
job if necessary. Many control options can change the details of this general pattern.

• BATCH (WITHOUT LCRM).
SRUN can also directly submit complex scripts to the (Trivial Batch System, TBS) job queue(s)
managed by SLURM for later execution when needed resources become available and when no
higher priority jobs are pending. For example,

srun -N 16 -b myscript.sh
uses SRUN's -b option to place myscript.sh into the TBS queue to later run on 16 nodes. Scripts in
turn normally contain either MPI programs or other, simple invocations of SRUN itself (as shown
above). SRUN's -b option thus supports basic, local batch service even on machines where LC's
metabatch system LCRM has not yet been installed (see below). On BlueGene/L only, scripts must
invoke MPIRUN instead of simple SRUN to start tasks.

• ALLOCATE.
To combine the job complexity of scripts with the immediacy of interactive execution, you can use
SRUN's "allocate" mode. For example,

srun -A -N 4 myscript.sh
uses SRUN's (uppercase) -A option to allocate specified resources (here, four nodes), spawn a subshell
with access to those resources, and then run multiple jobs using simple SRUN commands within the
specified script (here, myscript.sh) that the subshell immediately starts to execute. This is very like
allocating resources by setting AIX environment variables at the beginning of a script, and then using
them for scripted tasks. No job queues are involved.

SLURM Reference Manual - 17

• ATTACH.
You can monitor or intervene in an already running SRUN job, either batch (started with -b) or
interactive ("allocated," started with -A), by executing SRUN again and "attaching" (-a, lowercase)
to that job. For example,

srun -a 6543 -j
forwards the standard output and error messages from the running job with SLURM ID 6543 to the
attaching SRUN to reveal the job's current status, and (with -j, lowercase) also "joins" the job so that
you can send it signals as if this SRUN had initiated the job. Omit -j for read-only attachments.
Because you are attaching to a running job whose resources have already been allocated, SRUN's
resource-allocation options (such as -N) are incompatible with -a.

• BATCH (WITH LCRM).
On machines where LC's metabatch job-control and accounting system LCRM/DPCS is installed,
you can submit (with the LCRM utility PSUB) a script to LCRM that contains (simple) SRUN
commands within it to execute parallel jobs later, after LCRM applies the usual fair-share scheduling
process to your job and its competitors. Here LCRM takes the place of SRUN's -b option for indirect,
across-machine job-queue management.

SRUN SIGNAL HANDLING.
Signals sent to SRUN are automatically forwarded to the tasks that SRUN controls, with a few special
cases. SRUN handles the sequence CTRL-C differently depending on how many it receives in one second:

 CTRL-Cs within one second

 First reports the state of all tasks
 associated with SRUN.
 Second sends SIGINT signal to all
 associated SRUN tasks.
 Third terminates the job at once,
 without waiting for remote tasks
 to exit.

MPI SUPPORT.
On computer clusters with a Quadrics interconnect among the nodes (such as Lilac on SCF, or Thunder
and ALC on OCF) SRUN directly supports the Quadrics version of MPI without modification. Applications
built using the Quadrics MPI library communicate over the Quadrics interconnect without any special
SRUN options.

You may also use MPICH on any computer where it is available. MPIRUN will, however, need
information on its command line identifying the resources to use, namely

 -np SLURM_NPROCS -machinefile filename

where SLURM_NPROCS is the environment variable that contains the (-n) number of processors to use
and filename lists the names of the nodes on which to execute (the captured output from /bin/hostname
run across those nodes with simple SRUN). Sometimes the MPICH vendor configures these options
automatically. See also SRUN's --mpi "working features" option (page 29).

SLURM Reference Manual - 18

Comparison with POE

SRUN and AIX's POE (Parallel Operating Environment) both use UNIX environment variables to
manage the resources for each parallel job that they run. Of course, variables with comparable roles have
different names under each system (and both systems have many other environment variables for other
purposes too).

Three differences in detail between environment-variable use by SRUN and POE are noteworthy:

• SRUN assigns values to its resource-management variables by means of its own interactive options,
one option for each environment variable (plus extra control options, such as -j). Instead, POE uses
the usual SETENV or EXPORT utilities to assign values to its environment variables.

• POE's LoadLeveler ignores many environment variables when it run batch jobs under AIX on LC
machines. SLURM does not ignore the corresponding environment variables when set by SRUN,
even for batch runs.

• On LC Linux clusters, the completion of your SLURM-managed batch job on any compute node(s)
also automatically terminates any accompanying interactive processes run by you on those same
compute nodes (a policy started in August, 2007). Such processes may continue to run on AIX
machines. See the "User Impact" section (page 14) above for details.

This chart lists the SLURM (SRUN-set or inferred) resource-management environment variables for
which direct POE counterparts exist. For an explanatory inventory of all SLURM environment variables,
see the separate section (page 44) below.

POE
Variable
Name

SLURM
Variable
Name

SRUN
Option
To Set

Environment
Variable
Role

MP_PROCS(*)SLURM_NPROCS-nTotal processes to run
MP_NODES(*)SLURM_NNODES-NTotal nodes allocated
MP_SAVEHOSTFILE(*)SLURM_NODELIST(inferred)Node list for this job
MP_CHILDSLURM_PROCID(inferred)MP ID of current process
MP_STDOUTMODESLURM_STDOUTMODE-o (lc)Output mode choice
MP_RMPOOL(*)SLURM_PARTITION-pPartition for this job
MP_INFOLEVELSLURMD_DEBUG-dDebug message level
MP_INFOLEVELSLURM_DEBUG-v (lc)Output message level
MP_LABELIOSLURM_LABELIO-lOutput label choice

(*)Ignored by LoadLeveler for batch jobs on AIX machines at LC.

SLURM Reference Manual - 19

SRUN Run-Mode Options

For a strategic comparison (with examples) of the five different ways to use SRUN, see "SRUN Roles
and Modes," above. (page 17) This section explains the mutually exclusive SRUN options that enable its
different run modes. Each option has a one-character (UNIX) and a longer (Linux) alternative syntax.

-b (--batch) runs a script (whose name appears at the end of the SRUN execute line, not as an
argument to -b) in batch mode. You cannot use -b with -A or -a.

RESULT.
SRUN copies the script, submits the request to run (with your specified resource
allocation) to the local SLURM-managed job queue, and ends. When resources become
available and no higher priority job is pending, SLURM runs the script on the first
node allocated to the job, with STDIN redirected from /dev/null and STDOUT and
STDERR redirected to a file called jobname.out in the current working directory
(unless you request a different name or a more elaborate set of output files by using
-J or -o). In other words, -b executes the script through a queue, unhooked from
terminal interaction, but not under LCRM or Moab control. To prevent -b jobs (only)
from starting over from the beginning of their scripts in case of a machine downtime,
also use --no-requeue.

SCRIPT REQUIREMENTS.
(1) You must use the script's absolute pathname or a pathname relative to the current
working directory (SRUN ignores your search path).
(2) SRUN interprets the script using your default shell unless the file begins with the
character pair #! followed by the absolute pathname of a valid shell.
(3) The script must contain MPI commands or other (simple) SRUN commands to
initiate parallel tasks. On BlueGene/L only, the script must invoke MPIRUN rather
than simple SRUN to execute parallel tasks (this may affect script portability).
(4) Script lines prefixed with #SLURM insert SRUN options into the script (e.g.,
#SLURM --propagate); command line options override those within the script.

SLURM Reference Manual - 20

-A (uppercase, --allocate)

allocates compute resources (as specified by other SRUN options) and starts ("spawns")
a subshell that has access to those allocated resources. No remote tasks are started.
You cannot use -A with -b or -a. If you combine -A with the special-purpose option
--no-shell, then SRUN allocates the resources but exits instead of spawning a shell.

SCRIPTED USE.
If you specify a script at the end of SRUN's execute line (not as an argument to -A),
the spawned shell executes that script using the allocated resouces (interactively,
without a queue). See the -b option for script requirements.

UNSCRIPTED USE.
If you specify no script, you can then execute other instances of SRUN interactively,
within the spawned subshell, to run multiple parallel jobs on the resources that you
allocated to the subshell. The resources (nodes, etc.) will only be freed for other jobs
when you terminate the subshell.

--no-shell (used only with -A or --allocate) does not spawn (another) shell for --allocate mode
SRUN sessions.

SLURM Reference Manual - 21

-a jobid (lowercase, --attach=jobid)

attaches (or reattaches) your current SRUN session to the already running job whose
SLURM ID is jobid. The job to which you attach must have its resources managed
by SLURM, but it can be either interactive ("allocated," started with -A) or batch
(started with -b). This option allows you to monitor or intervene in previously started
SRUN jobs. You cannot use -a with -b or -A. Because the running job to which you
attach already has its resources specified, you cannot use -a with -n, -N, or -c. You
can only attach to jobs for which you are the authorized owner.

READ-ONLY.
By default, -a attaches to the designated job read-only. STDOUT and STDERR are
copied to the attaching SRUN, just as if the current SRUN session had started the job.
However, signals are not forwarded to the remote processes (and a single CTRL-C
will detach the read-only SRUN from the job).

READ-WRITE.
If you use -j (--join) or -s (--steal) along with -a, your SRUN session "joins" the
running job and can also forward signals to it as well as receive STDOUT and
STDERR from it. If you join a SLURM batch (-b) job, you can send signals to its
batch script. Join (-j) does not forward STDIN, but steal (-s, which closes other open
sessions with the job) does forward STDIN as well as signals.

-j (lowercase, --join)

joins a running SLURM job (always used only with -a, --attach, to specify the jobid).
This not only duplicates STDOUT and STDERR to the attaching SRUN session, but
it also forwards signals to the job's script or processes as well.

SLURM Reference Manual - 22

SRUN Resource-Allocation Options

These SRUN options (used alone or in combination) assign compute resources to your parallel
SLURM-managed job. Most options have a one-character (UNIX) and a longer (Linux) alternative syntax.
See also SRUN's other options that can affect node management for your job, especially the control (page
26) options and constraint (page 39) options, in separate subsections below. Speciality allocators follow
the primary ones (-n, -N) in alphabetical order.

-n procs (lowercase, --ntasks=procs)

requests that SRUN execute procs processes or tasks. To control how these processes
are distributed among nodes and CPUs, combine -n with -c or -N as explained below
(default is one process per node). On LC machines where Moab has replaced LCRM
as the batch-job scheduler, you can use SRUN's -n to replace the (former) PSUB -np
option that MSUB does not offer.

-N n (uppercase, --nodes=n)

allocates at least n nodes to this job, where n may be either
(1) a specific node count (such as -N 16), or
(2) a hyphen-separated range from a minimum to a maximum node count (such as
-N 2-4).
If the nodes are partitioned, each partition's node limits supersede those specified by
-N (jobs that request more nodes than the partition allows never leave SLURM's
PENDING or Moab's IDLE state). To change partitions, use SRUN's -p option (below).
See also -B (--extra-node-info) below in this section to specify your socket, core, or
thread allocation as well as nodes. Combinations of -n and -N control how job
processes are distributed among nodes according to the SRUN policies listed here:

-n/-N COMBINATIONS.
SRUN infers your intended number of processes per node if you specify both the
number of processes and the number of nodes for your job. Thus -n 16 -N 8 normally
results in running 2 processes/node (but see the next policy for exceptions).

MINIMUM INTERPRETATION.
SRUN interprets all node requests as minimum node requests (so -N 16 means "at
least 16 nodes"). If some nodes lack enough CPUs to cover the process count specified
by -n, SRUN will automatically allocate more nodes (than mentioned with -N) to
meet the need (for example, if not all nodes have 2 working CPUs, then -n 32 -N 16
together will allocate more than 16 nodes so that all processes are supported). The
actual number of nodes assigned (not the number reqested) is stored in environment
variable SLURM_NNODES.

CPU OVERCOMMITMENT.
By default, SRUN never allocates more than one process per CPU. If you intend to
assign multiple processes per CPU, you must invoke SRUN's -O (uppercase oh) option
along with -n and -N (thus -n 16 -N 4 -O together allow 2 processes/CPU on the 4
allocated 2-CPU nodes).

SLURM Reference Manual - 23

INCONSISTENT ALLOCATION.
SRUN rejects as errors inconsistent -n/-N combinations. For example, -n 15 -N 16
requests the impossible assignment of 15 processes to 16 nodes.

-B sockets[:cores[:threads]] (uppercase, --extra-node-info=sockets[:cores[:threads]])

requests a resource allocation with specific details that supplement the general node
allocation requested with -N (--nodes) above. Use -B to specify your job's needed
sockets (subnodes) per addressable node (and optionally cores (CPUs) per socket and
threads per core). Instead of this one combined option you can use these three separate
options if you wish, with the same results:
--sockets-per-node=sockets
--cores-per-socket=cores
--threads-per-core=threads

AFFINITY.
When the task/affinity plug-in is enabled, invoking -B or its three equivalent options
also makes SLURM use a CPU affinity mask to fill your allocation request as specified.

ALLOWED VALUES.
As with -N (--nodes), you can specify values here with
(1) a single count number (-B 4), or
(2) a hyphen-separated range from minimum to maximum (-B 2-4), or
(3) an asterisk (*) to request all available resources of the specified type (-B 4:*).

CONFIGURATION DEPENDENCE.
All of these four related options depend on SLURM's configuration:
(1) The task/affinity plug-in must be configured.
(2) The select/linear or select/con-res plug-in must be configured.
(3) If select/con-res, then it must have one of these parameters: CR_Core,
CR_Core_Memory, CR_Socket, or CR_Socket_Memory.

-c cpt (lowercase, --cpus-per-task=cpt)

assigns cpt CPUs per process for this job (default is one CPU/process). This option
supports multithreaded programs that require more than a single CPU/process for
best performance. For a different approach to the same need, see the --ntasks-per-node
option in the "Affinity Constraints" section (page 41) below.

-n/-c COMBINATIONS.
For multithreaded programs where the density of CPUs is more important than a
specific node count, use both -n and -c on the same SRUN execute line (rather than
-N). Thus -n 16 -c 2 results in whatever node allocation is needed to yield the requested
2 CPUs/process. This is the reverse of CPU overcommitment (see -N and -O, above).

SLURM Reference Manual - 24

--multi-prog assigns different executable programs with (perhaps) different arguments to each task.
When you use this option, SRUN's own argument is not a parallel program but instead
a 3-column configuration file that specifies your matrix of tasks, programs, and their
arguments. See the Multiple Program Usage (page 50) section below for details and
an example of using this option.

-p part (lowercase, --partition=part)

requests nodes only from the part partition (the default partition is assigned by the
system administrator on each separate LC machine).

-t min (lowercase, --time=min)

allocates a total of min minutes for this job to run (default is the current partition's
time limit). If min exceeds the partition's time limit, then the job never leaves the
PENDING state. When the time limit has been reached, SLURM sends each job
process SIGTERM followed (after a pause specified by SLURM's KillWait
configuration parameter) by SIGKILL.

-T nthreads (uppercase, --threads=nthreads)

requests that SRUN allocate nthreads threads to initiate and control the parallel tasks
in this job (default is the smaller of 10 or the number of nodes actually allocated,
SLURM_NNODES).

SLURM Reference Manual - 25

SRUN Control Options

These SRUN options control how a SLURM job manages its nodes and other resources, what its
working features (such as job name) are, and how it gives you help. Separate "constraint" options (page
39) (which behave like PSUB constraints) and I/O options (page 36) appear in other subsections on SRUN.
Most control options have a one-character, one-hyphen (UNIX) format and an alternative keyword,
two-hyphen (Linux) format, shown together here. System administrators see also SCONTROL (page 71).

Node Management

On All Machines:

-k (lowercase, --no-kill)

avoids automatic termination if any node fails that has been allocated to this job. The
job assumes responsibility for handling such node failures internally. (SLURM's
default is to terminate a job if any of its allocated nodes fail.)

-K (uppercase, --kill-on-bad-exit)

(default) terminates a job if any task has a nonzero exit code.

-m dist (lowercase, --distribution=dist)

tells SLURM how to distribute tasks among nodes for this job, where the choices for
dist are:

block assigns tasks in order to each CPU on one node before assigning
any to the next node. This is the default if the number of tasks
exceeds the number of nodes requested.

cyclic assigns tasks "round robin" across all allocated nodes (task1 goes
to the first node, task2 goes to the second node, etc.). This is the
default if the number of nodes requested equals or exceeds the
number of tasks.

hostfile assigns tasks to nodes in the order specified by the file named in the
environment variable SLURM_HOSTFILE.

plane assigns tasks to blocks, then within and between blocks too, as
diagrammed at http://www.llnl.gov/linux/slurm/dist_plane.html
(URL: http://www.llnl.gov/linux/slurm/dist_plane.html).

-r n (lowercase, --relative=n)

offsets the first job step to node n of this job's allocated node set (where the first node
is 0). Option -r is incompatible with "constraint" options -w and -x, and it is ignored
when you run a job without a prior node allocation (default for n is 0). SRUN does
not support job steps on BlueGene/L.

SLURM Reference Manual - 26

http://www.llnl.gov/linux/slurm/dist_plane.html

-s (lowercase, --share)

allows this job to share nodes with other running jobs. Sharing nodes often starts the
job faster and boosts system utilization, but it can also lower application performance.

SLURM Reference Manual - 27

On BlueGene/L ONLY:

--blrts-image=path

specifies the path to the blrts image for the BG/L block (the default path is in the file
blugene.conf).

--geometry=N[xM[xO]]

specifies your job's size in "nodes" in each direction within BG/L's field of nodes
(e.g., geometry=1x2x4 for 8 nodes). SLURM regards each BG/L 512-node
dual-processor "base partition" as a single 1024-processor node. Use SLURM's SMAP
utility (page 69) on BG/L to visualize job layout and the geometric intermixing of
several jobs.

If you omit --geometry on BG/L, then SRUN uses 1x1x1 as the default (or if you also
use -N num then SRUN uses numx1x1 as the default). If you omit O then the default
geometry is NxMx1; if you omit both M and O then the default is Nx1x1.

--conn-type=mesh|torus

specifies the type of interconnect that you want used between BG/L "base partitions"
("nodes" to SLURM), where the choices are mesh (the default) or torus.

--linux-image=path

specifies the path to the linux image for the BG/L block (the default path is in the file
blugene.conf).

--mloader-image=path

specifies the path to the mloader image for the BG/L block (the default path is in the
file blugene.conf).

--node-use=coprocessor|virtual

specifies how to use the second processor on each BG/L compute node, where the
choices are coprocessor (the default, so that the processor number is always t0) or
virtual (allows processor numbers t0 and t1, but seems to be incompatible with the
TotalView debugger).

-R (uppercase, --no-rotate)

disables rotation of job geometry to fit available space (the default is to rotate in three
dimensions).

--ramdisk-image=path

specifies the path to the ramdisk image for the BG/L block (the default path is in the
file blugene.conf).

--reboot forces the allocated nodes to reboot before starting to run your job.

SLURM Reference Manual - 28

Working Features

--begin=date|time|delay|special

defers job start until the specified time value, which may be any one of these formats:

date is any calendar date in the format
month day|MMDDYY|MM/DD/YY|DD.MM.YY

time is any time of day in the format HH:MM[:SS][AM|PM]

delay is specified by the digits count in the otherwise literal format:
now + count minutes|hours|days|weeks

special specifies the job start time by using any one of these unusual
time-literal strings:
midnight
noon
teatime [= 4 p.m.]
today
tomorrow

--core=ctype selects the corefile format for your job in contexts where several alternative formats
are supported. Here ctype may be:

normal (default) specifies a full core dump.

light specifies a lightweight corefile format (with liblwcf).

list causes SRUN to print a list of (other) currently supported corefile
formats (if any) and end.

--ctrl-comm-ifhn=addr

specifies the address addr or hostname to use for task communication and
synchronization primitives for MPCIH2 (PMI). The default value is the response to
the getnodename function (but you must supply an address if DNS lookup cannot be
performed on that hostname).

-D path (uppercase, --chdir=path)

causes each remote process to change its default directory to path (by using CHDIR)
before it begins execution (without -D, the current working directory of SRUN
becomes the default directory for each process).

-d level (lowercase, --slurmd-debug=level)

specifies level as the level at which daemon SLURMD reports debug information and
deposits it in this job's STDERR location. Here level can be any integer between 0
(quiet, reports only errors, the default) and 4 (extremely verbose messages).

SLURM Reference Manual - 29

-J jobname (uppercase, --job-name=jobname)

specifies jobname as the identifying string for this job (along with its system-supplied
job ID, as stored in SLURM_JOBID) in responses to your queries about job status
(the default jobname is the executable program's name).

--jobid=jid initiates a job step under the already allocated job whose ID is jid (assigning jid to
the environment variable SLURM_JOBID has the same effect).

--mpi=mtype specifies the type of MPI for SLURM to support (ususally with special initialization
procedures), where mtype can be any one of:

list lists currently available MPI types to choose from.

lam starts one LAMD process per node and sets the special environment
variables needed for LAM MPI.

mpich-gm starts MPI for the Myrinet switch.

mvapich starts MPI for the Infiniband switch.

none (default) performs no special initialization (works for many MPI
versions besides those mentioned above).

--nice[=nadjust]

adjusts the job's scheduling priority, where nadjust can range from -10000 (highest
priority) to 10000 (lowest priority), with a default decrease of 100. Only privileged
SRUN users can raise job priority (with negative nadjust). Systems running the Maui
scheduler ignore this option.

--no-requeue (applies only to --batch jobs) prevents the job from starting over from the beginning
(of its script) in case of a machine downtime (system administrators often try to
requeue (completely rerun) interrupted batch jobs).

-P jobid (uppercase, --dependency=jobid)

defers the start of this job until the job with jobid has completed. Many jobs can share
the same dependency jobid, even across different users. User SCONTROL (page 71)
to change jobid after submittal.

-q (lowercase, --quit-on-interrupt)

causes SRUN to quit immediately when it receives a CTRL-C (SIGINT). By default,
SRUN issues a status report after a single CTRL-C.

-U acct (uppercase, --account=acct)

charges this job's resource use to account acct on systems that have accounts (not
supported at LC). Use SCONTROL (page 71) to change acct after submittal.

SLURM Reference Manual - 30

-v (lowercase, --verbose)

reports verbose messages as SRUN executes your job (default is program output with
only overt error messages added). Using multiple -v options further increases message
verbosity.

-X (uppercase, --disable-status)

disables the (default) report of task status when SRUN receives a single CTRL-C
(SIGINT), and instead forwards the interrupt to the running job. A second CTRL-C
within one second terminates the job as well as SRUN.

SLURM Reference Manual - 31

Resource Control

-I (uppercase, --immediate)

exits if requested resources are not available at once (by default, SRUN blocks until
requested resources become available).

--network=type (AIX systems only, where SLURM has replaced LoadLeveler) specifies the
communication protocol to use (normally set with environment variable
SLURM_NETWORK; see that section (page 44) below). For systems with an IBM
Federation switch (Purple, UM, UV, UP), the choices for type include IP, SN_ALL,
SN_SINGLE, BULK_XFER, and the adapter names used as values for POE
environment variable MP_EUIDEVICE (see the "Task Communications" section
(URL: http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3) in the POE User
Guide).

-O (uppercase oh, --overcommit)

overcommits CPUs. By default, SRUN never allocates more than one process per
CPU. If you intend to assign multiple processes per CPU, you must invoke the -O
option along with -n and -N (thus -n 16 -N 4 -O together allow 2 processes/CPU on
the 4 allocated 2-CPU nodes). Even with -O, SRUN never allows more than
MAX_TASKS_PER_NODE tasks to run on any single node.

--propagate[=rlimits]

specifies which of the modifiable (soft) resource limits rlimits to propagate to the
compute nodes and hence apply to this job (without rlimits, propagates all resource
limits).

-W sec (uppercase, --wait=sec)

waits sec seconds after the first task terminates before terminating all remaining tasks
(default for sec is unlimited). Use -W to force an entire job to end fairly quickly if
any one task terminates prematurely.

SLURM Reference Manual - 32

http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3

Help and Message Options

--comment=text inserts any string text as a comment amid other options (e.g., in a script that runs
SRUN).

--help lists the long (Linux) and, if there is one, the corresponding short (UNIX,
one-character) name for every SRUN option, with a one-line description of each.
Options appear in categories by function, not alphabetically.

--mail-type=mtype

notifies by e-mail the user specified by --mail-user when events of type mtype occur,
where mtype can be any one of:

begin reveals the start of this job.

end reveals the successful completion of this job.

fail reveals premature termination of this job.

all reveals any job state change (including those above).

--mail-user=muser

specifies user muser (default is the job's submitter) to receive any state-change e-mail
messages about this job (as selected by --mail-type).

-Q (uppercase, --quiet)

suppresses all SRUN informational messages (only error messages are still displayed).

--usage reports a 9-line syntax summary for SRUN, which reveals many (but not all) SRUN
options, and usually includes either the short (UNIX, one-character) or long (Linux)
option name but not both. Options appear in no obvious order.

-V (uppercase, --version)

reports the currently installed version number for SLURM, then immediately ends.

SLURM Reference Manual - 33

Prolog and Epilog Options

These SRUN options let you supplement your basic job with programs that precede or follow it.

--prolog=executable

causes SRUN to run executable just before launching a job step (if NONE, the default
executable, then no prolog is run). This option overrides the SrunProlog parameter
in the slurm.conf file.

--epilog=executable

causes SRUN to run executable just after a job step completes (if NONE, the default
executable, then no epilog is run). This option overrides the SrunEpilog parameter in
the slurm.conf file.

--task-prolog=executable

causes the SLURMD daemon to run executable just before launching each task but
after any TaskProlog parameter in slurm.conf is run. This task-prolog program has
the normal environment variables available plus SLURM_TASK_PID (to reveal the
task's process ID), and standard output from this program can be used to set
environment variables for the task being launched.

--task-epilog=executable

causes the SLURMD daemon to run executable just after each task terminates but
before any TaskEpilog parameter in slurm.conf is run. The task-epilog program should
run only briefly, because SRUN will kill it along with any descendent processes after
a few seconds.

SLURM Reference Manual - 34

Debug (Root) Options

These special SRUN options allow root users to launch jobs as a user or group other than themselves
for testing or debugging.

--get-user-env (for root SRUN users only) retrieves the login environment variables for the user
specified in the --uid option (below) by running
su -username -c /usr/bin/env
and parsing the output. Environment variables already set in SRUN's environment
always take precedence over any environment variables imported from the user's
login environment. This option works only in batch (-b, --batch) mode and only for
root users (originally for use by Moab).

--gid=ggroup (for root SRUN users only) submits this job with ggroup's group access permissions,
there ggroup may be either the intended group name or the numerical group ID.

--uid=uuser (for root SRUN users only) submits this job as uuser instead of the actual submitting
user. Root users can invoke --uid to run jobs as a normal user yet in the RootOnly
partition; SRUN checks the invoking user's credentials to confirm access to the target
partition, but then drops the job's permissions to those of uuser after node allocation.
Here uuser may be either the intended user name or the numerical user ID.

SLURM Reference Manual - 35

SRUN I/O Options

I/O Commands

These SRUN commands manage and redirect the standard input to, as well as the standard output and
error messages from, parallel jobs executed under SLURM. Three of these commands let you choose from
among any of five I/O redirection alternatives ("modes") that are explained in the next section. (page 37)

-o mode (lowercase, --output=mode)

redirects standard output STDOUT for this job to mode, one of five alternative ways
to display, capture, or subdivide the job's I/O, explained in the next subsection (page
37). By default, SRUN collects STDOUT from all job tasks and line buffers it to the
attached terminal.

-i mode (lowercase, --input=mode)

redirects standard input STDIN for this job from mode, one of five alternative ways
to display, capture, or subdivide the job's I/O, explained in the next subsection (page
37). By default, SRUN redirects STDIN from the attached terminal to all job tasks.

-e mode (lowercase, --error=mode)

redirects standard error STDERR for this job to mode, one of five alternative ways
to display, capture, or subdivide the job's I/O, explained in the next subsection (page
37). By default, SRUN collects STDERR from all job tasks and line buffers it to the
attached terminal, just as with STDOUT. But you can request that SRUN handle
standard output and standard error differently by invoking -e and -o with different
redirection modes.

-l (lowercase ell, --label)

prepends the remote task ID number to each line of standard output and standard
error. By default, SRUN line buffers this I/O to the terminal (or to specified files)
without any task labels. Options -l and -u are mutually exclusive.

-u (lowercase, --unbuffered)

prevents line buffering of standard output from remote tasks (buffering is the SRUN
default). Options -l and -u are mutually exclusive.

SLURM Reference Manual - 36

I/O Redirection Alternatives

SRUN I/O options (page 36) -i (--input), -o (--output), and -e (--error) all take as arguments any of
five I/O redirection alternatives ("modes") summarized in this table and explained in more detail below it:

I/O Goes
To or From

Tasks
Covered

File-Naming
Subchoices

Redirection
Alternatives

SRUN (terminal)all tasksall [default]
/dev/null (ignored)all tasksnone
SRUN (terminal)one selected tasktaskid
one specified fileall tasksfilename
many separate files:many separate tasks:fstring
1 file per jobid.stepidall with jobid.stepid%J [uc]
1 file per jobidall with jobid%j [lc]
1 file per stepidall with stepid%s [lc]
1 file per nodeall on hostname%N [uc]
1 file per nodeall on node n%n [lc]
1 file per taskeach separate task%t [lc]

The I/O redirection alternatives compared in the table work in detail as follows:

all redirects STDOUT and STDERR from all job tasks to SRUN (and hence to the
attached terminal), and broadcasts STDIN from SRUN (the terminal) to all remote
tasks (this is SRUN's default behavior for handling I/O).

none redirects STDOUT and STDERR from all job tasks to /dev/null (i.e., SRUN receives
no I/O from any task), and sends no STDIN to any task (closes STDIN).

taskid redirects to SRUN (and hence to the attached terminal) STDOUT and STDERR from
the single specified task whose relative ID is taskid, where the range for integer taskid
starts at 0 (the first task) and runs through the total number of tasks in the current job
step. This choice also redirects STDIN from SRUN (the terminal) to this single
specified task.

filename redirects STDOUT and STDERR from all job tasks into a single file called filename,
and broadcasts STDIN from that same file to all remote tasks. To subdivide the I/O
among separate files, use the fstring alternative below.

fstring ["format string"]

uses a parameterized "format string" to systematically generate unique names for
(usually) multiple I/O files, each of which receives some job I/O depending on the
naming scheme that you choose. You can subdivide the received I/O into separate
files by job ID, step ID, node (name or sequence number), or individual task. In each
case, SRUN opens the appropriate number of files and associates each with the
appropriate subset of tasks.

SLURM Reference Manual - 37

Available parameters with which to construct fstring (and thereby to split the I/O
among separate files) include:

%J (uppercase) creates one file for each job ID/step ID combination for
this running job, and imbeds jobid.stepid in each file's name (for
example, out%J might yield files out4812.0, out4812.1, etc.).

%j (lowercase) creates one file for each job ID and imbeds jobid in its
name (for example, job%j might yield file job4812).

%s (lowercase) creates one file for each step ID and imbeds stepid in
its name (for example, step%s.out would yield files step0.out,
step1.out, etc.). SRUN does not support job steps on BlueGene/L.

%N (uppercase) creates one file for each node on which this job runs
and imbeds that node's short hostname in the file name (for example,
node.%N might yield files node.mcr347, node.mcr348, etc.).

%n (lowercase) creates one file for each node on which this job runs
and imbeds that node's numerical identifier relative to the job (where
the each job's first node is 0, then 1, etc.) in the file name (for
example, node%n would yield files node0, node1, etc.).

%t (lowercase) creates one file for each separate task in this running
job and imbeds that task's numerical identifier relative to the job
(the first task is 0) in the file name (for example, job%j-%t.out might
yield files job4812-0.out, job4812-1.out, etc.).

For all fstring parameters except the nonnumeric case of %N, you
can insert an integer between the percent character and the letter
(such as %3t) to "zero-pad" the resulting file names, that is, to always
use the integer number of character positions and to fill any empty
positions with zeros from the left. Thus job%j-%3t.out might yield
files job4812-000.out, job4812-001.out, etc.

SLURM Reference Manual - 38

SRUN Constraint Options

These SRUN options all limit the nodes on which your job will execute to only those nodes having the
properties ("constraints") that you specify here.

General Constraints

These SRUN constraints can apply to any job (unlike those in the next subsection).

-C clist (uppercase, --constraint=clist)

runs your job on those nodes having the properties in clist, where clist is a list of
features assigned for this purpose by SLURM system administrators (the features
may vary by network or machine). SRUN option -C thus behaves like PSUB constraint
option -c (lowercase, see the "Helpful PSUB Options" section (URL:
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5.2) of the EZJOBCONTROL
guide.
To conjoin (AND) multiple constraints, separate them in clist by using an ampersand
(c1&c2). To disjoin (OR) multiple constraints, separate them in clist by using a vertical
bar (c3|c4).
If no nodes have the feature(s) that you require with -C, then the SLURM job manager
will reject your job.

--contiguous=yes|no

specifies whether or not your job requires a contiguous range of nodes. The default
(YES) demands contiguous nodes, while alternative NO allows noncontiguous
execution.

--exclusive dedicates only whole nodes rather than individual processors to your job, even if
SLURM's select/con_res (consumable resources) plugin is enabled.

--job-mem=size estimates the maximum amount of real memory per node that your job will use, where
size is an integer number of megabytes. If you use both --mem and --job-mem, the
former value must exceed the latter.

--mem=size specifies a minimum amount of real memory per node, where size is an integer number
of megabytes. See also --job-mem.

--mincores=n specifies a minimum number n of cores (CPUs) per socket.

--mincpus=n specifies a minimum number n of CPUs per node.

--minsockets=n specifies a minimum number n of sockets per node.

--minthreads=n specifies a minimum number n of threads per core.

--tmp=size specifies a minimum amount of temporary disk space per node, where size is an integer
number of megabytes.

SLURM Reference Manual - 39

http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5.2

-w hosts (lowercase, --nodelist=hosts)

specifies by name the individual nodes that must be included in the set of nodes on
which your job runs (perhaps along with others unspecified). Option -w is incompatible
with SRUN option -r (--relative). Here hosts may have any of three formats:

host1,host2,... is a comma-delimited list of node names (e.g., mcr100,mcr200,...).

host[na-nb,nc,...] is a range of node names, perhaps mixed with individual nodes in a
comma-delimited sublist (e.g., mcr[1-256,500,...]).

filename is a file that contains node information in either of the previous two
formats (SRUN interprets any string containing the slash (/) character
as a file name).

-x hosts (lowercase, --exclude=hosts)

specifies by name the individual nodes that must be excluded from the set of nodes
on which your job runs (perhaps along with others unspecified). Option -x is
incompatible with SRUN option -r (--relative). Here hosts may have any of three
formats:

host1,host2,... is a comma-delimited list of node names (e.g., mcr100,mcr200,...).

host[na-nb,nc,...] is a range of node names, perhaps mixed with individual nodes in a
comma-delimited sublist (e.g., mcr[1-256,500,...]).

filename is a file that contains node information in either of the previous two
formats (SRUN interprets any string containing the slash (/) character
as a file name).

SLURM Reference Manual - 40

Affinity or NUMA Constraints

These SRUN constraints apply only to machines where the task-affinity or the NUMA (NonUniform
Memory Access) plugins have been enabled by the operating system.

-B (--extra-node-info)

adds detail to node allocations and hence is explained in the "SRUN
Resource-Allocation Options" section (page 23) above.

--cpu_bind=[quiet,|verbose,]type

binds tasks to CPUs (to prevent the operating system scheduler from moving the tasks
and spoiling possible memory optimization arrangements).

q[uiet] (default) quietly binds CPUs before the tasks run.

v[erbose] verbosely reports CPU binding before the tasks run.

Here type can be any one of these mutually exclusive alternatives:

no[ne] (default) does not bind tasks to CPUs.

rank binds tasks to CPUs by task rank.

map_cpu:idlist binds by mapping CPU IDs to tasks as specified in idlist, a
comma-delimited list cpuid1,cpuid2,...,cpuidn. SRUN interprets
CPU IDs as decimal values unless you precede each with 0x to
specify hexadecimal values.

mask_cpu:mlist binds by setting CPU masks on tasks as specified in mlist, a
comma-delimited list mask1,mask2,...,maskn. SRUN always
interprets masks as hexadecimal values (so using the 0x prefix is
optional).

To have SLURM always report on the selected CPU binding for all SRUN instances
executed in a shell, you can enable verbose mode directly by typing:
setenv SLURM_CPU_BIND verbose
However, SLURM_CPU_BIND will not propagate to tasks (binding by default only
affects the first execution of SRUN). To propagate --cpu_bind to successive SRUN
instances, excute the following in each task:
setenv SLURM_CPU_BIND \
${SLURM_CPU_BIND_VERBOSE},
${SLURM_CPU_BIND_TYPE}
${SLURM_CPU_BIND_LIST}

SLURM Reference Manual - 41

--hint=type binds tasks to suit the needs of different applications, according to the type that you
specify. Here the type choices are:

compute_bound selects settings for compute-bound applications (for example, uses
all the cores in each physical CPU).

memory_bound selects settings for memory-bound applications (for example, uses
only one core in each physical CPU).

[no]multithread [does not] deploy extra threads for in-core multithreading (can benefit
communication intensive applications).

help lists available hint types as a reminder.

--mem_bind=[quiet,|verbose,]type

binds tasks to memory (to stabilize possible memory optimization arrangements).
WARNING: the resolution of CPU and memory binding may differ on some
architectures. CPU binding may occur at the level of cores within a processor while
memory binding may occur at the level of nodes (whose definition may vary from
one system to another). Hence, the use of any type other than NONE or LOCAL is
not recommended.

q[uiet] (default) quietly binds memory before the tasks run.

v[erbose] verbosely reports memory binding before the tasks run.

Here type can be any one of these mutually exclusive alternatives:

no[ne] (default) does not bind tasks to memory.

rank binds tasks to memory by task rank.

local uses memory local to the processor on which each task runs.

map_mem:idlist binds by mapping a node's memory to tasks as specified in idlist, a
comma-delimited list cpuid1,cpuid2,...,cpuidn. SRUN interprets
CPU IDs as decimal values unless you precede each with 0x to
specify hexadecimal values.

mask_mem:mlist binds by setting memory masks on tasks as specified in mlist, a
comma-delimited list mask1,mask2,...,maskn. SRUN always
interprets masks as hexadecimal values (so using the 0x prefix is
optional).

SLURM Reference Manual - 42

 To have SLURM always report on the selected memory binding for all SRUN instances
executed in a shell, you can enable verbose mode directly by typing:
setenv SLURM_MEM_BIND verbose
However, SLURM_MEM_BIND will not propagate to tasks (binding by default only
affects the first execution of SRUN). To propagate --mem_bind to successive SRUN
instances, excute the following in each task:
setenv SLURM_MEM_BIND \
${SLURM_MEM_BIND_VERBOSE},
${SLURM_MEM_BIND_TYPE}
${SLURM_MEM_BIND_LIST}

--ntasks-per-node=ntasks

requests that no more than ntasks be invoked on each node. This option yields results
similar to using --cpus-per-task (in the "Resource Allocation" section (page 23) above)
but without needing to know in advance the CPUs per node where your job will run.
This can be useful for mixed MPI/OpenMP applications. See also --ntasks-per-socket
and --ntasks-per-core.

--ntasks-per-socket=ntasks

requests that no more than ntasks be invoked on each socket. (This is similar to
--ntasks-per-node but works at the socket level instead.) Tasks will be bound to sockets
unless you also specify --cpu_bind=none. (This option requires the CR_Socket or
CR_Socket_Memory SLURM configuration.) See also --ntasks-per-node and
--ntasks-per-core.

--ntasks-per-core=ntasks

requests that no more than ntasks be invoked on each core. (This is similar to
--ntasks-per-node but works at the core level instead.) Tasks will be bound to cores
unless you also specify --cpu_bind=none. (This option requires the CR_Core or
CR_Core_Memory SLURM configuration.) See also --ntasks-per-node and
--ntasks-per-socket.

SLURM Reference Manual - 43

Environment Variables

To see how the SLURM environment variables discussed here fit into the larger context of all
environment variables used at LC to manage jobs (both interactively and by LCRM in particular), consult
the comparative sections of LC's Environment Variables user manual (URL: http://www.llnl.gov/LCdocs/ev).

Option Variables.
Many SRUN options have corresponding environment variables (analogous to the approach used with
POE). The SRUN option, if invoked during execution, always overrides (resets) the corresponding
environment variable (which contains each job feature's default value, if there is a default).

Corresponding SRUN Option(s)Environment Variable
-U, --accountSLURM_ACCOUNT
--cpu_bindSLURM_CPU_BIND
-c, --ncpus-per-taskSLURM_CPUS_PER_TASK
[configuration file location]SLURM_CONF
--conn-typeSLURM_CONN_TYPE
--core-formatSLURM_CORE_FORMAT
-v, --verboseSLURM_DEBUG
-d, --slurmd-debugSLURMD_DEBUG
-P, --dependencySLURM_DEPENDENCY
-X, --disable-statusSLURM_DISABLE_STATUS
-m planeSLURM_DIST_PLANESIZE
-m, --distributionSLURM_DISTRIBUTION
--epilogSLURM_EPILOG
--exclusiveSLURM_EXCLUSIVE
-g, --geometrySLURM_GEOMETRY
-J, --job-nameSLURM_JOB_NAME
-l, --labelSLURM_LABELIO
--mem_bindSLURM_MEM_BIND
--networkSLURM_NETWORK(*)
-N, --nodesSLURM_NNODES
--no-requeueSLURM_NO_REQUEUE
--no-rotateSLURM_NO_ROTATE
-n, --ntasksSLURM_NPROCS
--ntasks-per-coreSLURM_NTASKS_PER_CORE
--ntasks-per-nodeSLURM_NTASKS_PER_NODE
--ntasks-per-socketSLURM_NTASKS_PER_SOCKET
-o, --overcommitSLURM_OVERCOMMIT
-p, --partitionSLURM_PARTITION
--prologSLURM_PROLOG
-D, --chdirSLURM_REMOTE_CWD
--ctrl-comm-ifhnSLURM_SRUN_COMM_IFHN
-e, --errorSLURM_STDERRMODE

SLURM Reference Manual - 44

http://www.llnl.gov/LCdocs/ev

Corresponding SRUN Option(s)Environment Variable
-i, --inputSLURM_STDINMODE
-o, --outputSLURM_STDOUTMODE
--task-epilogSLURM_TASK_EPILOG
--task-prologSLURM_TASK_PROLOG
-t, --timeSLURM_TIMELIMIT
-u, --unbufferedSLURM_UNBUFFEREDIO
-W, --waitSLURM_WAIT
-D, --chdirSLURM_WORKING_DIR

(*)See explanatory details at the end of this section.

SLURM Reference Manual - 45

Task-Environment Variables.
In addition, SRUN sets these environment variables (a few are the same as option variables listed above)
for each executing task on each remote compute node (any operating system). On LC machines where
Moab has replaced LCRM as the scheduler for batch jobs, Moab uses (most of) these variables instead of
PSUB variables to manage the attributes of the jobs that it runs. A few (as noted) were added exclusively
to support Moab.

SLURM_CPU_BIND_VERBOSE

affects the reporting of CPU/task binding, as explained in the "Affinity or NUMA
Constraints" section (page 41) under --cpu_bind.

SLURM_CPU_BIND_TYPE

affects the binding of CPUs to tasks, as explained in the "Affinity or NUMA
Constraints" section (page 41) under --cpu_bind.

SLURM_CPU_BIND_LIST

affects the binding of CPUs to tasks, as explained in the "Affinity or NUMA
Constraints" section (page 41) under --cpu_bind.

SLURM_CPUS_ON_NODE

specifies the number of processors available to the job on this node.

SLURM_JOBID

specifies the job ID of the executing job (see also SRUN's --jobid option (page 29)).

SLURM_LAUNCH_NODE_IPADDR

specifies the IP address of the node from which the task launch initiated (the node
where SRUN executed).

SLURM_LOCALID

specifies the node-local task ID for the process within a job.

SLURM_MEM_BIND_VERBOSE

affects the reporting of memory/task binding, as explained in the "Affinity or NUMA
Constraints" section (page 41) under --mem_bind.

SLURM_MEM_BIND_TYPE

affects the binding of memory to tasks, as explained in the "Affinity or NUMA
Constraints" section (page 41) under --mem_bind.

SLURM_MEM_BIND_LIST

affects the binding of memory to tasks, as explained in the "Affinity or NUMA
Constraints" section (page 41) under --mem_bind.

SLURM Reference Manual - 46

SLURM_NNODES

is the actual number of nodes assigned to run your job (which may exceed the number
of nodes that you explicitly requested with SRUN's -N option (page 23)).

SLURM_NODEID

specifies the relative node ID of the current node.

SLURM_NODELIST

specifies the list of nodes on which the job is actually running.

SLURM_NPROCS

specifies the total number of processes in the job.

SLURM_PRIO_PROCESS

(for Moab jobs) is the NICE value of the job when submitted. SLURM propagates
this to all spawned processes.

SLURM_PROCID

specifies the MPI rank (or relative process ID) for the current process.

SLURM_STEPID

specifies the step ID of the current job.

SLURM_TASK_PID

(for Moab jobs) specifies the process ID of the task being started on a compute node.

SLURM_TASKS_PER_NODE

specifies the number of tasks to initiate on each node. Values are a comma-delimited
list in the same order as SLRUM_NODELIST. To specify two or more nodes with
the same task count, follow the count by (x#), where # is the repetition count. For
example,
SLURM_TASKS_PER_NODE=2(x3),1
indicates two tasks per node on the first three nodes, then one task on the fourth node.

SLURM_UMASK

(for Moab jobs) captures the UMASK (user file-create mask) setting for this job's
user at the time of submittal. SLURM propagates this to all spawned processes.

MPIRUN_PARTITION

(BlueGene/L only) specifies the block name.

SLURM Reference Manual - 47

MPIRUN_NOALLOCATE

(BlueGene/L only) prevents allocating a block.

MPIRUN_NOFREE

(BlueGene/L only) prevents freeing a block.

SLURM Reference Manual - 48

Other SLURM-Relevant Variables.
Other environment variables important for SRUN-managed jobs include:

MAX_TASKS_PER_NODE

provides an upper bound on the number of tasks that SRUN assigns to each job node,
even if you allow more than one process per CPU by invoking SRUN's -O (uppercase
oh) option. (page 32)

SLURM_HOSTFILE

names the file that specifies how to assign tasks to nodes, rather than using the block
or cyclic approaches toggled by SRUN's -m (--distribution) option (page 26).

On AIX (IBM) machines only, the SLURM_NETWORK environment variable (described below) is
automatically set by LCRM when SLURM is used instead of LoadLeveler (alternatively, set with SRUN's
--network=type option (page 32) even though POE launches tasks instead of SRUN under AIX). On
(non-AIX) machines that use Moab instead of LCRM for batch-job scheduling, SLURM_NETWORK and
--network can also take the place of some specialized former PSUB options.

SLURM_NETWORK

specifies four network features for each SLURM job step (which under AIX means
for each POE invocation), using an argument with this sequential format:
network.[protocol],[device],[adapteruse],[mode]
where:

protocol specifies the network protocol (such as MPI).

device specifies the kind of switch used for communication (ethernet, FDDI,
etc.), where the choices are the same abbreviation strings as the
possible values of environment variable MP_EUIDEVICE (see the
POE User Guide, "Task Communications" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3)).

adapteruse specifies whether (SHARED) or not (DEDICATED) your job is
willing to share a node's switch adapter with other jobs (see the POE
User Guide, "Other POE Environment Variables" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.4) on
corresponding environment variable MP_ADAPTER_USE).

mode specifies which of two protocols or modes should be used for task
communications, where the choices are the same as the possible
values of environment variable MP_EUILIB (see the POE User
Guide, "Task Communications" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3)).

SLURM Reference Manual - 49

http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.4
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3

Multiple Program Usage

Strategy.
SRUN's --multi-prog option (see SRUN Resource-Allocation Options above (page 23)) lets you assign to
each parallel task in your job a different program with (if you wish) a different argument.

If you invoke --multi-prog, then SRUN's own argument is not the name of one executable program (as
usual) but rather the name of a local configuration file that specifies how to assign multiple programs and
arguments among your job's tasks. For example,

srun -n8 -l --multi-prog test.config

(where -l here labels each task's output by task number for clarity).

Configuration File.
Each row in an SRUN --multi-prog configuration file contains these three ordered fields, separated by
blanks:

Task number specifies by a comma-delimited series of nonnegative integers the specific tasks
configured on this row, with ranges specified by hyphens (for instance: 2,4-8,10,12).
Star (*) specifies all tasks, which of course defeats the point of invoking --multi-prog.

Executable file assigns to this row's tasks the specified program to execute (may be an absolute
pathname if you wish, such as /usr/bin/spell).

Argument assigns to this row's program the argument(s) listed. You can parameterize the
argument(s) by including either of these special expressions:

%t evaluates to the task number of the responsible task.

%o (lowercase oh) evaluates to the task offset, that is, to the task's
relative position within the task range configured on this row (always
starts with zero).

Example Usage.
Here is a sample --multi-prog configuration file to illustrate the above features:

 4-6 hostname
 1,7 echo task:%t
 0,2,3 echo task:%o

Here is the output of using the SRUN execute line shown above with this file serving as test.config (and
run on machine ALC):

SLURM Reference Manual - 50

 0: offset:0
 1: task:1
 2: offset:1
 3: offset:2
 4: alc20.llnl.gov
 5: alc21.llnl.gov
 6: alc22.llnl.gov
 7: task:7

SLURM Reference Manual - 51

SQUEUE (List Jobs)

SQUEUE Execute Line

SQUEUE displays the job ID and job name for every job currently managed by the SLURM control
daemon (SLURMCTLD) on the machine where you run SQUEUE, along with status and resource
information for each job (such as time used so far, or a list of committed nodes), in a table whose content
and format details you can control with SQUEUE options. (To report on node status rather than job status,
use SINFO (page 59) instead.)

BASIC RUN.
To run SQUEUE (on any machine with SLURM installed), type

squeue [opts]

where opts is a blank-delimited list of SQUEUE output-control options and their (comma-delimited)
arguments.

COLUMNS.
If run without options, SQUEUE reports by default on these job properties (in this order in columns left
to right) and then ends:

 job ID
 partition
 job name
 user name
 status (state) of job [for codes, see later section]
 time used so far (hours:minutes:seconds)
 total nodes (allocated or used)
 node list (specific node names)

See the first example (page 56) below for typical default SQUEUE output. You can change the properties
reported (and the order of the output columns) by using SQUEUE's -o (lowercase oh, --format) option.

ROWS.
Each row in the SQUEUE report describes one job (or, if you request, one job step; but job steps are not
supported on BlueGene/L). SQUEUE sorts the rows (alphabetically, or in decreasing magnitude) using
this ranked list of job properties:

 partition name
 status (state) of job
 priority
 time used so far

You can change the sort order (to more closely match PSUB by relying on job ID or job name, for example)
by using SQUEUE's -S (uppercase ess, --sort) option.

SLURM Reference Manual - 52

SQUEUE Options

Delimit all SQUEUE options with spaces (blanks), but delimit items in option-argument lists with
commas unless otherwise noted (-o requires space-delimited arguments, for example). Enclose all argument
lists in quotes (") for greater reliability. This section lists SQUEUE's control options alphabetically except
for -o, which gets a separate subsection at the end because of its elaborate format-specification language.

CONTROL OPTIONS.

-? (--help) displays a brief SQUEUE options summary, one line per option, giving both the
single-character and Linux-syntax versions of each option along with a very short
note on its role (but no argument details). The -? version fails on some machines, so
prefer --help.

-h (lowercase, --noheader)

omits the explanatory heads from SQUEUE's tabular output (for easier reuse of the
text).

-i sec (lowercase, --iterate=sec)

repeatedly gathers and reports the status information (as specified by other options)
every sec seconds. Use CTRL-C to stop this iterated display.

-j jlist (lowercase, --jobs=jlist)

limits the SQUEUE report to only the jobs specified in jlist, a comma-delimited list
of numerical SRUN job IDs (for example, --jobs="1235,1237,1239"). The default
report covers all current jobs. You cannot change the order in which SQUEUE reports
on jobs by using this option (instead, use -S or --sort).

-l (lowercase ell, --long)

adds to SQUEUE's default report another column (TIMELIMIT, which may contain
numerical values or the strings NOT_SET or UNLIMITED) and uses full words (such
as RUNNING) rather than abbreviations (such as R, see later section (page 58)) to
report job states. (Compare with -v, --verbose below.)

-p plist (lowercase, --partition=plist)

limits SQUEUE's report to jobs in the partitions specified by plist, a comma-delimited
list of partition names (such as "debug" or "pbatch").

-s slist (lowercase, --steps=slist)

limits the SQUEUE report to only the steps specified in slist, a comma-delimited list
of numerical SRUN job-step IDs (for example, --steps="6543.1,6555.3"). The default
report covers all current job steps. SQUEUE does not support job steps on BlueGene/L.

SLURM Reference Manual - 53

-S sortkeys (uppercase, --sort=sortkeys)

sorts the (job) rows in SQUEUE's report using the sort keys specified in sortkeys, a
comma-delimited list of the same field (column) specifiers used for and explained in
the -o (--format) option below. The default order is ascending; prefix each field
specifier with minus (-) for descending order. The default sort for jobs is --sort="P,t,-p"
(increasing partition names, then increasing job states, then decreasing job priority).
The default sort for job steps is --sort="P,i" (increasing partition names, then increasing
job-step IDs). SQUEUE does not support job steps on BlueGene/L.

-t statelist (lowercase, --states=statelist)

limits SQUEUE's report to jobs with the specified states (statuses), where statelist is
a comma-delimited list with these possible members: ALL, PENDING, RUNNING,
COMPLETE. The default report includes only PENDING and RUNNING jobs. See
the Job States (page 58) section below for an explanatory list of all SQUEUE job-state
codes.

-u ulist (lowercase, --users=ulist)

limits SQUEUE's report to jobs belonging to the users specified in ulist, a
comma-delimited list of user names on the system where you run SQUEUE.

-v (lowercase, --verbose)

prefixes the job report (table) that SQUEUE would otherwise generate (based on the
other control options that you invoked) with a list of 12 report-control features and
the current setting for each (for example, the limits that you have currently imposed
on states, users, or output format). The job report itself is not changed (compare with
-l, --long).

-V (uppercase, --version)

displays SQUEUE's current version number and ends (with no job report).

OUTPUT-FORMAT OPTION.

-o formatspec (lowercase, --format=formatspec)

specifies both the content of SQUEUE's report (which job properties to include as
report columns) and the layout (the left-to-right order of those columns, the size of
each column in characters, and whether the data is left- or right-justified within each
column). Here formatspec is a quoted, space (not comma) delimited list of "field
specifications," one for each column that you want SQUEUE to report, and each with
this syntax: %.wZ

% is the [required] field specification flag, marking the start of each
column's separate specification.

.(dot) requests right justification of this column's data (the default omits
the dot and uses left justification of the reported data).

SLURM Reference Manual - 54

w is an integer specifying the width of this column in characters
(omitting w uses just as much space as the data requires, which
usually means that there is no column alignment from one row
(= job) to the next).

Z is a single case-sensitive letter that specifies the content (the job
property) reported in this column (using the dictionary given below).
For example, %.8j uses a right-justified (.) column 8 characters wide
to report job name (lowercase j).

The default column specifications for noncustomized SQUEUE job reports are:
-o "%.7i %.9P %.8j %.8u %.2t %.9M %.6D %N"
See the SQUEUE example (page 56) section below for a sample default report and
a sample column-customized report built using the -o option.

Available one-letter case-sensitive content specifiers (Z) for use in %.wZ field
specifications are (in alphabetical order):

b time when this job started executing
c minimum number of CPUs requested
C (uppercase) actual number of CPUs allocated
d minimum temp disk space (in Mbyte) requested
D (uppercase) minimum number of nodes requested (if pending),
 or, actual number of nodes allocated (if running)
e time when job ended (or is predicted to end)
f node features required by this job
h (yes/no) allocated nodes can be shared with other jobs?
i job ID or job-step ID (numeric)
j job name (alphanumeric)
l time limit (days:hours:minutes:seconds)
 or NOT_SET yet, or UNLIMITED
m minimum requested memory size (in Mbyte)
M (uppercase) time used (days:hours:minutes:seconds)
n list of requested node names
N (uppercase) list of allocated node names
o minimum number of nodes requested
O (uppercase) (yes/no) are contiguous nodes requested?
p job priority (0.0 .GE. p .LE. 1.0)
P (uppercase) job partition
S (uppercase) job start time
t job state (abbreviated, see later section)
T (uppercase) job state (spelled out)
u user name (alphanumeric)
U (uppercase) user ID (numeric)

SLURM Reference Manual - 55

SQUEUE Examples

[1]

GOAL: To display the default status report about all current SLURM-managed jobs on the machine
(cluster) where you run SQUEUE.

STRATEGY: Run SQUEUE with no options. An eight-column report, sorted by partition and then by
time used (not by job ID or name), appears. SQUEUE automatically ends. Column ST
here reports job STATE (status, see later section (page 58) for details).
To add a time-limit column and see full-word status entries, use SQUEUE's -l (lowercase
ell, --long) option. To report only on specified jobs rather than on all jobs, use the -j
(--jobs) option with a comma-delimited list of (numerical) job IDs as the argument.

User: squeue

Rtne:
JOBID PARTITION NAME USER ST TIME NODES NODELIST
46675 pbatch Rptn3202 bert R 10:28:55 256 atlas[163-346,
 572-583,663-679,
 766-788,
 1132-1151]
 4631 pbatch runbo jgross R 10:17:15 280 atlas[616-630,
 680-765,889-1032,
 1097-1131]
 4007 pbatch paris03. kubota R 10:02:48 16 atlas[556-571]
 3866 pbatch NVE85Ryd ikuo R 5:21:10 144 atlas[525-552,631-
 662,805-888]
 4655 pbatch cp2k mcgrath5 R 1:52:10 128 atlas[104-162,475-
 479,1033-1096]
 4827 pbatch 64chLd hiratani R 1:51:50 16 atlas[584-599]
 4812 pbatch batch_MC rieben R 1:51:27 64 atlas[480-524,600-
 615,793-795]
 5256 pbatch d32_2 bosl R 1:36:05 60 atlas[347-406]
 4736 pbatch psub_10m mrhee R 1:35:36 16 atlas[407-422]
 4743 pbatch psub_100 mrhee R 1:35:04 16 atlas[439-454]
 5305 pbatch amBeA59_ aspuru R 41:52 8 atlas[423-430]
 5101 pbatch egas pederiva R 32:22 32 atlas[455-474,789-
 791,796-804]
66927 pdebug TVdebugS awcook PD 0:00 20
67151 pdebug ale3d kippster R 22:39 2 atlas[96-97]
67152 pdebug inferno kubota R 22:00 16 atlas[40-55]
67168 pdebug ale3d kippster R 9:53 2 atlas[98-99]
67169 pdebug gd2d.Lin benliu R 7:00 16 atlas[56-71]

SLURM Reference Manual - 56

[2]

GOAL: To build a customized status report about current SLURM-managed jobs, for example,
showing only job names, requested features (if any), and time used, with all rows in
alphabetical (instead of time-used) order.

STRATEGY: (1) Use SQUEUE's -o (lowercase oh, --format) option to specify which specific columns
(job properties) you want to report, the width of each column in characters, and the order
for the columns to appear (left to right). SQUEUE's general column-specification language
is described with -o in the options section (page 53) above. Here, %15j requests a
15-character job-name column, %10f requests a 10-character features-requested column,
and %15M requests a 15-character time-used column.
(2) Use SQUEUE's -S (uppercase ess, --sort) option to arrange rows alphabetically by
job name (j) rather than in the default order (the order shown in Example 1).

User: squeue -o "%15j %10f %15M" -S "j"

Rtne:
 NAME FEATURES TIME
 R20026 (null) 6:45:34
 TVdebugSession (null) 25:18
 batch (null) 1:52:09
 bw73d.scr (null) 4:33:45
 cale.mcr-icc-de (null) 4:34
 case5_03_31_04. (null) 6:45:21
 jeep (null) 20:14
 jobrestartl (null) 3:09:13
 mcrh2.bat (null) 1:37:24
 mcrh2.bat (null) 10:31
 mcrh2.bat (null) 10:14
 mcrh2.bat (null) 9:16
 mcrh2.bat (null) 2:32
 old_config (null) 1:52:30
 pu1.psub (null) 6:45:14
 pu2.psub (null) 6:45:05
 runkull (null) 0:49
 runover (null) 6:45:27
 runpF3d_mcr (null) 5:02:17
 sst (null) 2:03:50

SLURM Reference Manual - 57

SQUEUE Job State Codes

Most SQUEUE reports use short codes (abbreviations) to reveal the state (current status) of each job
that SLURM manages. The SQUEUE job-state codes and what they mean are explained here in alphabetical
order. A separate section covers SINFO node state codes (page 66).

Note that these SQUEUE codes differ from those used by PSTAT to report the status that LCRM/DPCS
assigns to the batch jobs that it schedules (across machines "above" SLURM). See the Status Values for
Batch Jobs (URL: http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1.2) section of the LCRM/DPCS
Reference Manual for a long explanatory list of those different job states.

CD (COMPLETED)
Job has successfully ended all of its processes on all nodes (LCRM/DPCS:
CMPLETED).

CG (COMPLETING)
Job is in the process of completing, so some processes on some nodes may still be
active.

F (FAILED)
Job has terminated with a nonzero exit code or other failure condition.

NF (NODE_FAIL)
Job has terminated because one or more nodes allocated to it has failed.

PD (PENDING)
Job is awaiting resource allocation (there are many corresponding LCRM/DPCS states
depending on just which resources are needed).

R (RUNNING)
Job is executing successfully now (LCRM/DPCS: RUN).

TO (TIMEOUT)
Job has terminated upon reaching its time limit (LCRM/DPCS: TERMINATED).

SLURM Reference Manual - 58

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1.2
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1.2

SINFO (List Nodes)

SINFO Execute Line

SINFO reports current status information on node partitions and on individual nodes for computer
systems managed by SLURM. SINFO's reports can help you plan job submittals and avoid hardware
problems. SINFO's output is a table whose content and format you can control with SINFO options. (To
report on job status rather than on node status, use SQUEUE (page 52) instead.)

BASIC RUN.
To run SINFO (on any machine with SLURM installed), type

sinfo [opts]

where opts is a blank-delimited list of SINFO output-control options and their quoted, comma-delimited
arguments.

COLUMNS.
If run without options, SINFO reports by default on these node properties (in this order in six columns left
to right) and then ends:

 partition
 availability
 time limit
 node count
 node state [for state codes, see later section]
 node list (specific node names covered)

See the first example (page 67) below for typical default SINFO output. You can change the properties
reported (and the order of the output columns) by using SINFO's -o (lowercase oh, --format) option.

ROWS.
Each row in the SINFO report describes one node partition (or, if you use node-oriented options such as
-n or -N, one or more specific nodes). SINFO sorts the rows by partition name (in a preconfigured order
as specified in the file /etc/slurm/slurm.conf) and then in decreasing order by node state (or in increasing
order by node name for node-oriented reports). However, you can change the order in which SINFO sorts
rows by using SINFO's -S (uppercase ess, --sort) option, described in the next section.

SLURM Reference Manual - 59

SINFO Options

Delimit all SINFO options with spaces (blanks), but delimit items in option-argument lists with commas
unless otherwise noted (-o requires space-delimited arguments, for example). Enclose all argument lists
in quotes (") for greater reliability. This section lists SINFO's control options alphabetically except for -o,
which gets a separate subsection at the end because of its elaborate format-specification language.

HELP OPTIONS.

--help displays a brief SINFO options summary, one line per option, giving both the
single-character and Linux-syntax versions of each option along with a very short
note on its role (and some argument hints).

--usage displays a MAN-format syntax summary for SINFO (shows option letters but no
explanatory clues). For more vebose help, use --help.

CONTROL OPTIONS.

-a (lowercase, --all)

reports on partitions that are configured as hidden and partitions that are unavailable
to the user's group (if any). To report on fewer or specific partitions, use -p. To report
more output fields (columns), use -l. Option --hide undoes -all.

-d (lowercase, --dead)

reports the count of nonresponding ("dead") nodes for each partition (if there are any;
often 0) and includes STATE and NODELIST information only for those (if any).

-e (lowercase, --exact)

(applies only when reporting CPU count, memory size, or disk space using -o or -Nl)
does not group node information on multiple nodes unless their configurations are
identical. By default (without -e), SINFO may report CPU count, memory size, and
disk space for nodes in the same partition and state with a minimum value followed
by a plus sign (e.g., "250+").

-h (lowercase, --noheader)

omits the explanatory heads from SINFO's tabular output (for easier reuse of the text).

--hide (no one-character version)

suppresses reports on all partitions declared hidden or not available to the user's group
(the default; --all undoes --hide).

-i sec (lowercase, --iterate=sec)

repeatedly gathers and reports the status information (as specified by other options)
every sec seconds. Use CTRL-C to stop this iterated display.

SLURM Reference Manual - 60

-l (lowercase ell, --long)

displays four more output fields (page 64) (columns) than in SINFO's default report
(JOB_SIZE, ROOT, SHARE, GROUPS), but no more rows (instead try --all). This
option is incompatible with -o (--format). Combining -N with -l reports CPU count,
memory size, disk space, scheduling weight, and declared features (if any).

-n nodes (lowercase, --nodes=nodes)

reports information only for the specified nodes. For nodes use a quoted full node
name (e.g., "mcr224"), a quoted comma-delimited list of full node names (e.g.,
"mcr224,mcr225"), or a quoted range of nodes specified with brackets (e.g.,
"mcr[224-227]").

-N (uppercase, --Node)

reports information in a node-oriented format (begins with node list and node count
columns). By default, SINFO reports information in a partition-oriented format. This
option is incompatible with -o (--format). Combining -N with -l reports CPU count,
memory size, disk space, scheduling weight, and declared features (if any).

-r (lowercase, --responding)

reports state information only for responding nodes (omits DOWN or DRAINED
nodes).

-R (uppercase, --list-reasons)

reports, for each node that is currently DOWN or DRAINED, its name and the first
35 characters of the "reason field" optionally provided by the SLURM system
administrator. All other nodes are omitted (unless you invoke additional options). To
explicitly report the STATE as well as the REASON for each troubled node, you
must combine -R with -l (or use -o).

-s (lowercase, --summarize)

replaces SINFO's default format (one row for each different STATE in which some
nodes fall) with a compressed NODES(A|I|O|T) column that summarizes the count
of available|idle|other|total nodes in one string for each partition. This option is
incompatible with -o (--format).

-S sortkeys (uppercase, --sort=sortkeys)

sorts the (partition or node) rows in SINFO's report using the sort keys specified in
sortkeys, a comma-delimited list of the same field (column) specifiers used for and
explained in the -o (--format) option below. The default order is ascending; prefix
each field specifier with minus (-) for descending order. The default sort for partitions
is --sort="#P,-t" (partitions ordered as configured in /etc/slurm/slurm.conf, then
decreasing node state). With -N, the default sort is --sort="N" (increasing node name).

SLURM Reference Manual - 61

-t statelist (lowercase, --states=statelist)

limits SINFO's report to nodes with the specified states, where statelist is a quoted,
comma-delimited list with these possible members (case insensitive):
ALLOC
ALLOCATED
COMP
COMPLETING
DOWN
DRAIN
DRAINED
DRAINING
IDLE
UNK
UNKNOWN.
By default, SINFO reports on nodes in the specified states whether they are responding
or not, but you can use -d or -r to filter this report further.

-p pname (lowercase, --partition=pname)

reports information only about the specified (single) partition (lists are not accepted
as an argument here).

-v (lowercase, --verbose)

prefixes the node report (table) that SINFO would otherwise generate (based on the
other control options that you invoked) with a list of 16 report-control features and
the current setting for each (revealing, for example, the limits that you have currently
imposed on states, nodes, or output format). The basic report itself is not changed
(compare with -l, --long).

-V (uppercase, --version)

displays SINFO's current version number and ends (with no node report).

OUTPUT-FORMAT OPTION.

-o formatspec (lowercase, --format=formatspec)

specifies both the content of SINFO's report (which node properties to include as
report columns) and the layout (the left-to-right order of those columns, the size of
each column in characters, and whether the data is left- or right-justified within each
column). Here formatspec is a quoted, space (not comma) delimited list of "field
specifications," one for each column that you want SINFO to report, and each with
this syntax: %.wZ

% is the [required] field specification flag, marking the start of each
column's separate specification.

SLURM Reference Manual - 62

.(dot) requests right justification of this column's data (the default omits
the dot and uses left justification of the reported data).

w is an integer specifying the width of this column in characters
(omitting w uses just as much space as the data requires, which
usually means that there is no column alignment from one row (=
node) to the next).

Z is a single case-sensitive letter that specifies the content (the node
property) reported in this column (using the dictionary given below).
For example, %.8d uses a right-justified (.) column 8 characters
wide to report temporary disk space per node in Mbyte (lowercase
d).

The default column specifications for noncustomized SINFO node reports are:
-o "%9P %5a %.9l %.5D %6t %N"

See the SINFO example (page 67) section below for a sample default report and a
sample column-customized report built using the -o option.

Available one-letter case-sensitive content specifiers (Z) for use in %.wZ field
specifications are (in alphabetical order):

a availability of a partition (up/down)
A (uppercase) node count for (allocated/idle) states,
 see F
c number of CPUs per node
d temporary disk space (in Mbyte) per node
D (uppercase) total number of nodes (per partition)
f node features specified (if any)
F (uppercase) node count for (allocated/idle/other/total)
 states, see A
g groups allowed for listed nodes
h (yes/no/force) nodes can be shared with other jobs?
l time limit (days:hours:minutes:seconds or INFINITE)
m memory size per node (in Mbyte)
N (uppercase) list of node names
P (uppercase) node partition name
r (yes/no) only user root may start jobs?
R (uppercase) reason if node unavailable
s allowed nodes/job (range)
t node state (abbreviated, see later section)
T (uppercase) node state (spelled out)
w scheduling weight (an integer)

SLURM Reference Manual - 63

SINFO Output Fields

SINFO reports are tables each column of which lists values for some node-related field or property.
This section explains all the column heads ("output field" labels) that can possibly appear in an SINFO
report (and, when not obvious from the column content, tells which SINFO option generates a report that
includes the column in question). Option -h (--noheader) eliminates these column heads for easier reuse
of SINFO's output by other programs.

AVAIL is the current state of a SLURM-managed partition (either UP or DOWN). For the
current state of the individual nodes or node subsets within a partition, see the STATE
column (both AVAIL and STATE appear in SINFO's default report). See also
REASON.

CPUS reports the number of CPUs (processors) per node in node-oriented (rather than
partition-oriented) output (such as from SINFO options -Nl).

FEATURES lists the declared SLURM features of each node or node subset, if any (the default
FEATURE is "null"), in node-oriented output (such as from SINFO options -Nl).

GROUPS lists the groups allowed to use resources from each reported partition (the default is
ALL groups). Use -l (--long).

JOB_SIZE reports the minimum and maximum node count that can be allocated to any user job
in a reported partition. A single number indicates that the minimun and maximum
node count are the same, while INFINITE indicates no maximum node count. Use -l
(--long).

MEMORY is the size of real memory in megabytes on the reported nodes in node-oriented output
(use -Nl).

NODELIST lists the names (usually using a bracketed numerical range) of nodes associated with
each reported partition (or instead, NODELIST appears first in node-oriented reports
such as from -Nl).

NODES is the count of nodes with each reported configuration (or partition).

NODES(A/I) is the count of nodes with a requested configuration by node state in the form
"available/idle." Use -o (--format) with the output specifier %A to request this column.

NODES(A/I/O/T)

is the count of nodes with a requested configuration by node state in the form
"available/idle/other/total.' Use either -s (--summarize) or -o (--format) with the output
specifier %F to request this column.

PARTITION is the name of a SLURM-managed partition (where the suffix * identifies the default
partition).

SLURM Reference Manual - 64

REASON shows the first 35 characters of the field optionally provided by each SLURM
administrator to explain why a node's STATE is either DOWN or DRAINED. Use
-R (--list-reasons) to get this column; use -Rl to get both REASON and STATE in
the same SINFO report. The default REASON is "null."

ROOT reveals if the ability to allocate resources in a reported partition is restricted to the
root user (YES or NO).

SHARE reveals if jobs that are allocated resources in a reported partition will share those
resources. Use -l (--long). The possible values for SHARE are:

NO indicates that resources are never shared.

FORCE indicates that resources are always shared.

YES indicates that resources may be shared if specific job or resource
features otherwise allow.

STATE is the current state of an individual node or node subset within a SLURM-managed
partition. For the current state of the whole partition, see the AVAIL column (both
AVAIL and STATE appear in SINFO's default report). The next section (page 66)
lists and explains the multiple values possible in the STATE column. See also
REASON.

TIMELIMIT lists the maximum time limit for any user job in a reported partition in
days:hours:minutes:seconds (INFINITE means no job time limit). TIMELIMIT
appears in SINFO's default report.

TMP_DISK is the size of temporary disk space in megabytes on the reported nodes. Use -Nl to
report.

WEIGHT is an integer representing the scheduling weight on each node (in a similar set). Use
-Nl to report.

SLURM Reference Manual - 65

SINFO Node States

In SINFO reports, the strings below are the only possible values of the STATE column, indicating the
current status of a node, a set of nodes, or a node partition. STATE codes with * appended indicate that a
reported node is not responding (SLURM does not allocate new work to such nodes, which eventually
enter the DOWN state).

The default width of the STATE column is 5 characters, but SINFO option -o (--format) can change
this and the reported STATE codes will lengthen or shorten to fill the allowed spaces. SINFO option -t
(--states) will limit your report to only those nodes with the (comma-delimited list of) state(s) that you
specify.

A separate section covers SQUEUE's job state codes (page 58).

ALLOC[ATED] means that this node (or set, or partition) has already been assigned to one or more
jobs.

COMP[LEATING]

means that job(s) assigned to this node are already terminating. COMPLETING
disappears when all of the job's processes as well as the SLURM epilog program (if
any) have terminated. See the slurm.conf MAN page for details.

DOWN means that this node is unvailable for jobs. SLRUM automatically declares nodes
DOWN if some failure occurs. Also, system administrators may declare a node
DOWN. If a node resumes normal operation, SLRUM can automatically return it to
service. See ReturnToService and SlurmdTimeout descriptions in the slurm.conf
MAN page for more details.

DRAIN[ED] means that this node has been declared unavailable by a system administrator using
SCONTROL's UPDATE command.

DRAINING [DRNG] means that this node is currently running a job, but it will not be allocated
to additional jobs. The node state changes to DRAINED when the last job on it
completes. System administrators put nodes in this state by using SCONTROL's
UPDATE command.

IDLE means that this node is not currently assigned to any jobs and it available for use.

UNK[NOWN] means that the SLRUM controller has just started and hence this node's real status
has not yet been determined.

SLURM Reference Manual - 66

SINFO Examples

[1]

GOAL: To display the default status report about all SLURM-managed nodes on the machine
(cluster, here ATLAS) where you run SINFO.

STRATEGY: Run SINFO with no options. An six-column report (allegedly sorted by node state reported)
appears. SINFO automatically ends. In this report, * appended to a partition name indicates
the default partition, while * appended to a STATE value indicates that the node reported
on that row is not currently responding. To report on only one partition of your choice,
use SINFO's -p (--partition) option. To report on only one STATE, use the -t (--states)
option. For an explanation of each possible column heading in an SINFO report, see the
SINFO Output Fields section (page 64) above.

User: sinfo

Rtne:
 PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
 pdebug up 30:00 37 idle atlas[2-31,34-35]
 pbatch* up infinite 2 drain* atlas[606,748]
 pbatch* up infinite 1064 alloc atlas[42-63,72-503,514-543,
 546-575,578-605,607,610-639,
 648-747,749-1079,1090-1119,
 1122-1151]
 pbatch* up infinite 6 idle atlas[36-41]

SLURM Reference Manual - 67

[2]

GOAL: To build a customized status report about specific nodes on a SLURM-managed cluster
(here, ATLAS), for example, showing only CPUs/node, temporary disk space per node,
and allowed nodes/job.

STRATEGY: (1) Specify which nodes you want reported by using SINFO's -n (--nodes) option (which
here selects ATLAS nodes from 1 to 500 inclusive).
(2) Use SINFO's -o (lowercase oh, --format) option to specify which specific columns
(node properties) you want to report, the width of each column in characters, and the
order for the columns to appear (left to right). SINFO's general column-specification
language is described with -o in the options section (page 60) above. Here, %25N requests
a 25-character node-list column, %.6c requests a 6-character right-justified CPUs/node
column, %.8d requests an 8-character right-justified disk-space column, and %.12s requests
a 12-character right-justified nodes/job column. For an explanation of each possible
column heading in an SINFO report, see the SINFO Output Fields section (page 64)
above.

User: sinfo -n "atlas[1-500]" -o "%25N %.6c %.8d %.12s"

Rtne:
 NODELIST CPUS TMP_DISK JOB_SIZE
 atlas[2-31,34-35] 8 1 1-16
 atlas[36-63,72-500] 8 1 1-infinite

SLURM Reference Manual - 68

SMAP (Show Job Geometry)
ROLE.

On BlueGene/L only, the SMAP utilty reveals not only which nodes are allocated to currently running jobs
but also the geometric arrangement of those nodes (and hence, the way that BG/L jobs fit among one
another topographically). On BG/L, SMAP thus supplements SINFO (page 59) and SQUEUE (page 52)
as a visually enhanced way to monitor job interactions and to plan spatially for new node allocations.

PREREQUISITES.
(1) SMAP runs only on LC's BlueGene/L (BG/L) machine.
(2) SMAP takes over the terminal window in which it runs. So executing it as a controllee of XTERM, in
a separate window dedicated to its output, is a good strategy (see below).
(3) SMAP needs a window wider than 80 characters to display its character-based "map" of job/node
allocations effectively. Requesting a 100-character-wide window with XTERM's -geometry option is a
good strategy (see below).

EXECUTION.
Because of its prerequisites (above), a typical appropriate SMAP run could begin with an execute line such
as this

xterm -geometry 100x30 -e /usr/bin/smap -Dj >& /dev/null &

to show the arrangement of jobs currently running (-Dj) on BG/L.

TYPICAL OUTPUT.
SMAP's character-based map of job/node allocations typically looks like this (some blank columns have
been trimmed to fit this manual):

 a a a a b b d d ID JOBID PARTITION USER NAME ST TIME NODES NODELIST
 a a a a b b d d a 12345 batch joseph tst1 R 43:12 64 bgl[000x333]
 a a a a b b c c b 12346 debug chris sim3 R 12:34 16 bgl[420x533]
a a a a b b c c c 12350 debug danny job3 R 0:12 8 bgl[622x733]
 d 12356 debug dan colu R 18:05 16 bgl[600x731]
 a a a a b b d d e 12378 debug joseph asx4 R 0:34 4 bgl[612x713]
 a a a a b b d d
 a a a a b b c c
a a a a b b c c

 a a a a . . d d
 a a a a . . d d
 a a a a . . e e Y
a a a a . . e e |
 |
 a a a a . . d d 0----X
 a a a a . . d d /
 a a a a /
a a a a . . . # Z

Note here that:
(1) As the legend indicates, the origin (node 000) lies at the REAR (upper, not lower) left corner of the
bottom "plane" (4-line group, and each such 4-line group shows another Y-dimension plane above it).

SLURM Reference Manual - 69

(2) Unassigned (idle) BG/L base partitions ("nodes" to SLURM) are shown as a period (.) in the map.
(3) Down/drained base partitions (unavailable for use) are shown as a pound sign (#). In this example, only
BGL703 is down.

SLURM Reference Manual - 70

SCONTROL (Manage Configurations)
ROLE.

SCONTROL is the SLURM utility that manages SLURM's own configuration, including the properties
that it assigns to nodes, node partitions, and other SLURM-controlled system features. Most SCONTROL
options and commands are intended for, and can only be successfully executed by, a system administrator
(a privileged or root user). Some SCONTROL commands report useful configuration information or
manage job checkpoints, however, and any user can benefit from invoking them appropriately. The rest
of this section discusses only those few general-user SCONTROL commands.

EXECUTE LINE.
Run SCONTROL by typing

scontrol command argument

where the general-user commands and their specific arguments are summarized below (most commands
are for system administrators only). Without any command, SCONTROL prompts for input.

GENERAL-USER COMMANDS.
The subset of SCONTROL commands that any user can invoke includes these:

checkpoint action jobid[.stepid]

requests one of several allowed checkpoint activities on those LC AIX machines that
also use SLURM (instead of IBM's LoadLeveler). You must (previously) set
environment variable CHECKPOINT to YES and specify a location and name for
future checkpoint files. See the "Checkpointing with SLURM and POE" section (URL:
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s7.5) of the LCRM Reference
Manual for details, especially for LCRM batch jobs. Here:

action specifies what to do after the requested checkpoint occurs, where
the three most useful alternatives are:

create requests a checkpoint and continues the job(step)
after it occurs.

vacate requests a checkpoint and terminates the job(step)
after it occurs.

restart resumes execution of a previously checkpointed
job(step).

jobid[.stepid] specifies the range for the checkpointing activity, which can be all
existing steps for a specified jobid alone (e.g., 4812), or the
individual job step indicated by a jobid.stepid combination (e.g.,
4812.4).

exit (or QUIT) terminates SCONTROL during interactive sessions.

SLURM Reference Manual - 71

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s7.5

show entity id displays the current state of the SLURM-managed item that you specify, where

entity can be any of these alternative literal strings:
config [see "Scheduler Types" above (page 15)]
daemons
job
node
partition
step

id specifies which individual entity to report (for example, by providing
a node name (e.g., mcr123), a partition name (e.g., pdebug), or a job
ID number (e.g., 1428)).

SLURM Reference Manual - 72

SCANCEL (Signal or Kill Jobs)

SCANCEL Execute Line

SCANCEL dequeues pending or terminates running SLURM-manged jobs (or their individual job
steps) by sending the UNIX KILL (9) signal, or, if you so specify, sends to the jobs or their steps any other
UNIX signal.

To run SCANCEL type

scancel [options] [joblist]

where

options is a space-delimited list of SCANCEL filter, mode, or information options explained
in the next subsection (page 74). If you specify more than one filter (-n, -p, -t, -u)
option, the conditions that each imposes are conjoined (jobs must satisfy all filters to
be selected).

joblist is a space-delimited list of SLURM job ID numbers (54321) or job step numbers
(54321.3, 54321.4, etc.), as revealed by SQUEUE (page 52) or SMAP (page 69).

SELECTING JOBS.
You can omit all SCANCEL filter options if you specify one or more jobs (or job steps) overtly, and you
can omit a joblist if you specify at least one filter option, but you cannot omit both from the SCANCEL
excute line. SCANCEL run with no arguments at all simply reports this error message

 error: no job identification provided

and ends immediately.

OWNERSHIP.
Only a job's owner (or a root user) can signal (and hence cancel) a job or job step successfully. Attempts
by anyone else to signal a job or job step yield the error message

 error: kill job error on jobid nnnnn

and have no effect on the job.

RESOURCE (RE)ALLOCATION.
Killing a job step with SCANCEL does not terminate the job to which the step belongs and does not release
the resources that SLURM has allocated to that job. Killing a whole job (sending it the default KILL signal
with SCANCEL), however, does indeed release the job's previous resource allocation.

ENVIRONMENT VARIABLES.
For SCANCEL options -b, -i, -v, and the four filters options (-n, -p, -t, -u), SLURM recognizes a
corresponding environment variable of the same name (e.g., SCANCEL_PARTITION). You can make
the same decisions by setting those environment variables, but subsequent use of SCANCEL with a
command-line option always overrides the environment variable value.

SLURM Reference Manual - 73

SCANCEL Options

The SCANCEL options are organized into three functional groups (those that select jobs to signal,
those that control SCANCEL's behavior or modes, and those that report information), and then alphabetically
within each group.

FILTER OPTIONS.

-n jobname (lowercase, --name=jobname)

specifies the name of the job to be signaled (no default).

-p pname (lowercase, --partition=pname)

specifies the SLURM partition (e.g., pdebug) from which jobs are to be signaled (no
default).

-t jstate (lowercase, --state=jstate)

specifies the SLURM state that jobs must be in to be signaled, where jstate must be
one of these choices: pending, running, suspended (by default, SCANCEL selects
jobs from all states based on other filters).

-u uname (lowercase, --user=uname)

specifies the login name of the user whose job(s) are to be signaled (useful for root
users or for users with many jobs to cancel, but remember that even with -u you cannot
signal another user's jobs).

MODE OPTIONS.

-h (lowercase, --batch)

signals the batch shell for the job(s) otherwise specified.

-i (lowercase, --interactive)

prompts you to interactively confirm (yes|no) the signal for each selected job or job
step before SCANCEL sends it.

-q (lowercase, --quiet)

reports no error messages if a selected job cannot be signaled (because it has already
completed). See also -v; you cannot use both.

-v (lowercase, --verbose)

increases the verbosity and detail of SCANCEL's reports. See also -q; you cannot use
both.

SLURM Reference Manual - 74

-s sigid (lowercase, --signal=sigid)

specifies the name (e.g., TERM) or the indentifying number (e.g., 2) of the signal that
you want SCANCEL to send to the selected job(s) or job step(s). The default sigid is
KILL (9), which cancels the job or step. Possible UNIX signal numbers available for
sigid here include 1, 2, 3, 9, 15, and 18 (whose exact interpretation may depend on
the local version of UNIX).

INFORMATION OPTIONS.

--help lists each SCANCEL option and gives a one-line explanation of its role, then ends.

--usage gives a very brief summary of SCANCEL's execute-line syntax (but no option
explanations), then ends.

-V (uppercase, --version)

reports the current version of SCANCEL and ends.

SLURM Reference Manual - 75

SCANCEL Examples

[1]

GOAL: To cancel the tenth job step of SLURM job 4321 (and release no resources), then cancel
the entire job 4489 (and release its allocated resources).

STRATEGY: Use a simple SCANCEL execute line with no options and a space-delimited list of
jobs/steps to cancel.

User: scancel 4321.10 4489

[2]

GOAL: To cancel all pending SLURM jobs owned by you (here, user JFK) that were slated to
run in the local PBATCH partition.

STRATEGY: Use an SCANCEL filter option to impose each of the three conditions on job selection
(their constraints are conjoined), then omit any overt list of jobs to signal. Remember,
nonroot uses can only cancel their own jobs.

User: scancel --state=pending --user=jfk --partition=pbatch

SLURM Reference Manual - 76

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2007 The Regents of the University of California. All rights reserved.

SLURM Reference Manual - 77

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 80).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where SLURM runs.
who Who to contact for assistance.

introduction Overview of SLURM features, comparisons.

slurm-strategy Special benefits built into SLURM.
slurm-goals SLURM design goals as resource manager.
slurm-roles RMS, TBS, LCRM, SLURM compared.
slurm-systems How SLURM interacts with oper. systems.

slurm-features How SLURM works.
slurm-components Software units comprising SLURM.

slurmctld SLURMCTLD control daemon explained.
slurmd SLURMD local daemon explained.

portability How plugin modules make SLURM adaptable.
user-impact SLURM's effect on typical jobs.
scheduler-types SLURM's three alternative job schedulers.

slurm-operation User interaction with SLURM.
slurm-utilities SLURM's direct user utility programs.

srun Job-submittal and resource utility.
srun-roles SRUN roles and modes compared.
poe-comparison SRUN and (IBM) POE differences.
run-mode-options Enabling different job-run alternatives.
resource-allocation Assigning compute resources to jobs.
control-options Managing general job features.
node-management Spreading tasks, sharing nodes.
working-features Verbosity, job name, path options.
resource-control Waiting for resources, overcommitting.
help-options Requesting syntax summaries.
prolog-options Job and task prologs, epilogs.
debug-options Extra controls for root users.

i-o-options Handling job input, output, errors.
i-o-commands Input, output, error controls.
i-o-alternatives Five ways to redirect I/O.

constraint-options Specifying job constraints.
general-constraints Constraints for any job.
numa-constraints CPU and NUMA constraints only.

environment-variables SRUN environment variables defined.
multi-prog-usage Configuration example for SRUN --multi-prog.

squeue Job reporting, monitoring utility.
squeue-execute-line How to run SQUEUE.
squeue-options Controlling, customizing SQUEUE output.
squeue-examples Standard and customized SQUEUE reports.
job-states SQUEUE job state (status) codes.

SLURM Reference Manual - 78

sinfo Node status/property reporting utility.
sinfo-execute-line How to run SINFO.
sinfo-options Controlling, customizing SINFO output.
sinfo-output-fields Column heads in SINFO reports explained.
node-states SINFO node state (status) codes.
sinfo-examples Standard and customized SINFO reports.

smap Job geometry utility (BlueGene/L only).

scontrol Sys admin configuration utility.

scancel Job signaling or killing utility.
scancel-execute-line How to run SCANCEL.
scancel-options Selecting jobs, signals, interactivity for SCANCEL.
scancel-examples Using SCANCEL with or without options.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

SLURM Reference Manual - 79

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
availability Where SLURM runs.
constraint-options Specifying job constraints.
control-options Managing general job features.
date The latest changes to this document.
debug-options Extra controls for root users.
entire This entire document.
environment-variables SRUN environment variables defined.
general-constraints Constraints for any job.
help-options Requesting syntax summaries.
i-o-alternatives Five ways to redirect I/O.
i-o-commands Input, output, error controls.
i-o-options Handling job input, output, errors.
index The structural index of keywords.
introduction Overview of SLURM features, comparisons.
job-states SQUEUE job state (status) codes.
multi-prog-usage Configuration example for SRUN --multi-prog.
node-management Spreading tasks, sharing nodes.
node-states SINFO node state (status) codes.
numa-constraints CPU and NUMA constraints only.
poe-comparison SRUN and (IBM) POE differences.
portability How plugin modules make SLURM adaptable.
prolog-options Job and task prologs, epilogs.
resource-allocation Assigning compute resources to jobs.
resource-control Waiting for resources, overcommitting.
revisions The complete revision history.
run-mode-options Enabling different job-run alternatives.
scancel Job signaling or killing utility.
scancel-execute-line How to run SCANCEL.
scancel-options Selecting jobs, signals, interactivity for SCANCEL.
scancel-examples Using SCANCEL with or without options.
scheduler-types SLURM's three alternative job schedulers.
scontrol Sys admin configuration utility.
scope Topics covered in this document.
sinfo Node status/property reporting utility.
sinfo-examples Standard and customized SINFO reports.
sinfo-execute-line How to run SINFO.
sinfo-options Controlling, customizing SINFO output.
sinfo-output-fields Column heads in SINFO reports explained.
slurm-components Software units comprising SLURM.
slurm-features How SLURM works.
slurm-goals SLURM design goals as resource manager.
slurm-operation User interaction with SLURM.
slurm-roles RMS, TBS, LCRM, SLURM compared.
slurm-strategy Special benefits built into SLURM.
slurm-systems How SLURM interacts with oper. systems.
slurm-utilities SLURM's direct user utility programs.
slurmctld SLURMCTLD control daemon explained.
slurmd SLURMD local daemon explained.
smap Job geometry utility (BlueGene/L only).
squeue Job reporting, monitoring utility.
squeue-examples Standard and customized SQUEUE reports.
squeue-execute-line How to run SQUEUE.

SLURM Reference Manual - 80

squeue-options Controlling, customizing SQUEUE output.
srun Job-submittal and resource utility.
srun-roles SRUN roles and modes compared.
title The name of this document.
user-impact SLURM's effect on typical jobs.
who Who to contact for assistance.
working-features Verbosity, job name, path options.

SLURM Reference Manual - 81

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
27Aug07 scancel New section explains signaling utility.

introduction SCANCEL comparison added.
slurm-utilities

 Link to new section added.
user-impact Linux helper processes end when job ends.
index New keywords for new (sub)sections.

06Aug07 run-mode-options
 One SRUN option added, one deleted.

resource-allocation
 One SRUN option added, many new details.

control-options
 Ten SRUN options added, many new details.

constraint-options
 Ten SRUN options added, many new details.

environment-variables
 Fourteen SRUN env vars added, explained.

14Mar07 introduction Cross ref to Moab manual added.
resource-allocation

 --nprocs becomes --ntasks, Moab role noted.
environment-variables

 Three Moab-related env vars added, explained.
sinfo-examples ATLAS cases replace MCR cases.

12Sep06 slurm-systems Operating system comparison section added.
prolog-options SRUN prolog/epilog section added.
debug-options SRUN root-user special options added.
numa-constraints

 SRUN CPU and NUMA constraints added.
multi-prog-usage

 SRUN tips on multiple programs added.
srun Many options added, details updated.
environment-variables

 More details, option/variable table added.
index New keywords for 5 new sections.

09Mar06 scontrol New section on admin utility.
index New keyword for new section.
slurm-utilities

 Link to new section added.
control-options

 Cross ref added to SCONTROL role.

24Jan06 environment-variables
 SLURM_NETWORK added.
 Cross ref. added for Env. Var. manual.

11Apr05 slurm-roles TBS replaces NQS.
slurmctld No job steps on BG/L.
scheduler-types

 No backfill scheduling on BG/L.

SLURM Reference Manual - 82

slurm-utilities
 SMAP for BG/L added.

srun-roles MPIRUN needed in BG/L scripts.
run-mode-options

 MPIRUN needed in BG/L scripts.
node-management

 Four SRUN BG/L-only options added.
squeue No job steps on BG/L.
smap New section on BG/L tool.
index New keyword for new section.

08Nov04 sinfo New sections on node reporting tool.
index New keywords for new sections.
squeue Cross references to SINFO added.
user-impact SQUEUE, SINFO compared.
slurm-strategy LCRM replaces DPCS (throughout).
slurm-utilities

 Link added, SINFO details expanded.

14Oct04 scheduler-types
 Three alternative schedulers compared.

index New keyword for new section.

10Aug04 job-states SQUEUE job-state codes explained.
squeue-options Links to job states added.
index New keyword for new section.

18May04 squeue New sections on monitoring tool.
index New keywords for new sections.

17Mar04 control-options
 14 SRUN options added in 4 subsections.

i-o-options 5 SRUN options for I/O redirection explained.
constraint-options

 8 node-constraint options added.
environment-variables

 2 more env. variables explained.
index 6 new keywords for new sections.

21Oct03 srun Major SRUN features, options explained.
introduction SRUN's central role introduced.
index Nine new keywords for new sections.

20Aug03 entire Draft edition of SLURM manual.

TRG (27Aug07)

SLURM Reference Manual - 83

UCRL-WEB-201386
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (27Aug07) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

SLURM Reference Manual - 84

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	SLURM Goals and Roles
	SLURM Goals
	SLURM Roles
	SLURM and Operating Systems

	SLURM Features
	SLURM Components
	SLURMCTLD
	SLURMD

	Portability (Plugins)
	User Impact
	Scheduler Types

	SLURM Operation
	SLURM Utilities
	SRUN (Submit Jobs)
	SRUN Roles and Modes
	Comparison with POE
	SRUN Run-Mode Options
	SRUN Resource-Allocation Options
	SRUN Control Options
	Node Management
	Working Features
	Resource Control
	Help and Message Options
	Prolog and Epilog Options
	Debug (Root) Options

	SRUN I/O Options
	I/O Commands
	I/O Redirection Alternatives

	SRUN Constraint Options
	General Constraints
	Affinity or NUMA Constraints

	Environment Variables
	Multiple Program Usage

	SQUEUE (List Jobs)
	SQUEUE Execute Line
	SQUEUE Options
	SQUEUE Examples
	SQUEUE Job State Codes

	SINFO (List Nodes)
	SINFO Execute Line
	SINFO Options
	SINFO Output Fields
	SINFO Node States
	SINFO Examples

	SMAP (Show Job Geometry)
	SCONTROL (Manage Configurations)
	SCANCEL (Signal or Kill Jobs)
	SCANCEL Execute Line
	SCANCEL Options
	SCANCEL Examples

	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

